We consider the problem of finding a maximal independent set (MIS) in the shared blackboard communication model with vertex-partitioned inputs. There are $n$ players corresponding to vertices of an undirected graph, and each player sees the edges incident on its vertex -- this way, each edge is known by both its endpoints and is thus shared by two players. The players communicate in simultaneous rounds by posting their messages on a shared blackboard visible to all players, with the goal of computing an MIS of the graph. While the MIS problem is well studied in other distributed models, and while shared blackboard is, perhaps, the simplest broadcast model, lower bounds for our problem were only known against one-round protocols. We present a lower bound on the round-communication tradeoff for computing an MIS in this model. Specifically, we show that when $r$ rounds of interaction are allowed, at least one player needs to communicate $\Omega(n^{1/20^{r+1}})$ bits. In particular, with logarithmic bandwidth, finding an MIS requires $\Omega(\log\log{n})$ rounds. This lower bound can be compared with the algorithm of Ghaffari, Gouleakis, Konrad, Mitrovi\'c, and Rubinfeld [PODC 2018] that solves MIS in $O(\log\log{n})$ rounds but with a logarithmic bandwidth for an average player. Additionally, our lower bound further extends to the closely related problem of maximal bipartite matching. To prove our results, we devise a new round elimination framework, which we call partial-input embedding, that may also be useful in future work for proving round-sensitive lower bounds in the presence of edge-sharing between players. Finally, we discuss several implications of our results to multi-round (adaptive) distributed sketching algorithms, broadcast congested clique, and to the welfare maximization problem in two-sided matching markets.


翻译:我们考虑在共享黑板通信模式中找到一个最大独立的数据集(MIS) 的问题。 在共享的黑板通信模式中找到一个最大独立的数据集(MIS ), 并有顶端配置投入 。 虽然在其它分布式模式中已经很好地研究了MIS问题, 而共享的黑板或许是简单的运行周期模式, 而每个玩家看到其顶端的边缘事件。 这样, 每个边端都被其端点所知道, 并且因此由两个玩家共享。 玩家同时在共享的黑板上同时发布信息, 以计算所有玩家可见的黑板, 目的是计算图示的 MIS 。 至少在其它分布式模式中很好地研究了MIS问题, 也许简单最简单的广播模式, 我们的问题的下边框, 我们的圆环交易交易在这种模式中显示一个较低的连接点。 具体地说, 当允许用美元进行互动的时候, 至少一个玩家需要用 将 $Omelga(n) IMIS(n\20+Q), liver+1+%) 来将我们的新运行的游戏中, 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月26日
Arxiv
0+阅读 · 2022年10月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员