Homomorphic encryption, which enables the execution of arithmetic operations directly on ciphertexts, is a promising solution for protecting privacy of cloud-delegated computations on sensitive data. However, the correctness of the computation result is not ensured. We propose two error detection encodings and build authenticators that enable practical client-verification of cloud-based homomorphic computations under different trade-offs and without compromising on the features of the encryption algorithm. Our authenticators operate on top of trending ring learning with errors based fully homomorphic encryption schemes over the integers. We implement our solution in VERITAS, a ready-to-use system for verification of outsourced computations executed over encrypted data. We show that contrary to prior work VERITAS supports verification of any homomorphic operation and we demonstrate its practicality for various applications, such as ride-hailing, genomic-data analysis, encrypted search, and machine-learning training and inference.
翻译:基因加密可以直接用密码文本进行算术操作,这是保护敏感数据的云压计算隐私的一个有希望的解决办法。然而,计算结果的正确性没有得到保证。我们建议使用两个错误检测编码,并建造验证器,使基于云的同形态计算在不同的取舍下进行实际客户验证,同时不损害加密算法的特性。我们的验证器在使用基于完全同质加密方法的错误进行环形循环学习的同时运作。我们在VERITAS中采用了我们的解决方案,这是用于核查对加密数据进行的外包计算的一个现成的核查系统。我们表明,与以前的工作相反,VERITAS支持对任何同形态操作的核查,我们证明它适用于各种应用,例如载载式、基因数据分析、加密搜索、机器学习培训和推理等。