This paper proposes a novel deep learning approach for single image defocus deblurring based on inverse kernels. In a defocused image, the blur shapes are similar among pixels although the blur sizes can spatially vary. To utilize the property with inverse kernels, we exploit the observation that when only the size of a defocus blur changes while keeping the shape, the shape of the corresponding inverse kernel remains the same and only the scale changes. Based on the observation, we propose a kernel-sharing parallel atrous convolutional (KPAC) block specifically designed by incorporating the property of inverse kernels for single image defocus deblurring. To effectively simulate the invariant shapes of inverse kernels with different scales, KPAC shares the same convolutional weights among multiple atrous convolution layers. To efficiently simulate the varying scales of inverse kernels, KPAC consists of only a few atrous convolution layers with different dilations and learns per-pixel scale attentions to aggregate the outputs of the layers. KPAC also utilizes the shape attention to combine the outputs of multiple convolution filters in each atrous convolution layer, to deal with defocus blur with a slightly varying shape. We demonstrate that our approach achieves state-of-the-art performance with a much smaller number of parameters than previous methods.
翻译:本文建议对基于反内核的单一图像脱色进行新的深层次学习。 在非焦点图像中, 模糊的形状在像素中相似, 尽管模糊的大小可以空间上变化。 要使用反内核来使用属性, 我们利用这样的观察, 当在保持形状的同时, 对应的反内核的形状仅与脱色模糊变化的大小相同, 并且只是规模变化。 根据观察, 我们提议了一个平行的内核共振( KPAC) 区块, 具体设计为将反内核的属性整合为单一图像脱色。 要有效地模拟反内核的变异形状, KPAC 使用不同的尺度, 我们利用相同的变色变色体的形状。 为了有效地模拟不同的反向内核的大小, KPAC 由少数具有不同变相的内核层组成, 并学习每个变相层的内分层的内分层 。 KPAC 与我们每个变相变相的变相模型中, 我们的分层的分层分析方式与不同的变相法 。