Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.


翻译:事实证明,大多数现有的全球网点通常利用节点特征的低频信号,这引起了一个根本问题:我们究竟需要的是真实世界应用中低频信息吗?在本文件中,我们首先提出一个实验性调查,评估低频和高频信号的作用,结果清楚地表明,探索低频信号只是远离在不同情况下学习有效的节点代表;我们如何适应性地学习更多信息,超越全球网中低频信息之外的信息?一个明智的答案可以帮助全球网点增强适应能力。我们应对这一挑战,并提议一个新型的频率适应动态图变网络(FAGCN),采用自定机制,在信息传递过程中适应性地整合不同的信号。为了更深入地理解,我们从理论上分析低频信号和高频信号在学习节点代表方面的作用,这进一步解释了为什么FAGCN可以在不同类型的网络上很好地运行。在六个现实世界网络上进行的大规模实验证实,FAGCN的优势不仅缓解了超水平问题,而且还超越了超水平问题。

13
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
KDD20 | AM-GCN:自适应多通道图卷积网络
专知会员服务
38+阅读 · 2020年8月26日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
146+阅读 · 2020年6月28日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
已删除
将门创投
13+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2020年4月29日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月24日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关资讯
一文读懂图卷积GCN
计算机视觉life
21+阅读 · 2019年12月21日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
已删除
将门创投
13+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员