The min-distance between two nodes $u, v$ is defined as the minimum of the distance from $v$ to $u$ or from $u$ to $v$, and is a natural distance metric in DAGs. As with the standard distance problems, the Strong Exponential Time Hypothesis [Impagliazzo-Paturi-Zane 2001, Calabro-Impagliazzo-Paturi 2009] leaves little hope for computing min-distance problems faster than computing All Pairs Shortest Paths, which can be solved in $\tilde{O}(mn)$ time. So it is natural to resort to approximation algorithms in $\tilde{O}(mn^{1-\epsilon})$ time for some positive $\epsilon$. Abboud, Vassilevska W., and Wang [SODA 2016] first studied min-distance problems achieving constant factor approximation algorithms on DAGs, obtaining a $3$-approximation algorithm for min-radius on DAGs which works in $\tilde{O}(m\sqrt{n})$ time, and showing that any $(2-\delta)$-approximation requires $n^{2-o(1)}$ time for any $\delta>0$, under the Hitting Set Conjecture. We close the gap, obtaining a $2$-approximation algorithm which runs in $\tilde{O}(m\sqrt{n})$ time. As the lower bound of Abboud et al only works for sparse DAGs, we further show that our algorithm is conditionally tight for dense DAGs using a reduction from Boolean matrix multiplication. Moreover, Abboud et al obtained a linear time $2$-approximation algorithm for min-diameter along with a lower bound stating that any $(3/2-\delta)$-approximation algorithm for sparse DAGs requires $n^{2-o(1)}$ time under SETH. We close this gap for dense DAGs by obtaining a near-$3/2$-approximation algorithm which works in $O(n^{2.350})$ time and showing that the approximation factor is unlikely to be improved within $O(n^{\omega - o(1)})$ time under the high dimensional Orthogonal Vectors Conjecture, where $\omega$ is the matrix multiplication exponent.


翻译:两个节点之间的最小距离 $2 - 美元, v 美元 被定义为从美元到美元或美元到美元之间的最小距离, 并且是DAG中的一种自然距离指标。 至于标准的距离问题, 强烈的指数时间假设[Impagliazzo- Paturi- Zane 2001, Calabro- Impagliazzo- Paturi 2009] 给计算小距离问题留下的希望比计算所有节点最短路径更快的希望。 这可以用美元到美元或美元, 美元到美元。 所以自然的是, 使用 $( 美元) 的近距离算算法来计算一些正数 美元 。 Aboud, Vassilevska W. 和 Wang [SODOD2016] 第一次研究小距离问题, 使DAGs 的固定的离差点算算更近, 获得 3美元 和 直线点的调算算法, 以美元 美元计时值显示时间 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月9日
Arxiv
0+阅读 · 2022年11月8日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
0+阅读 · 2022年11月6日
Arxiv
0+阅读 · 2022年11月4日
Arxiv
0+阅读 · 2022年11月3日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
52+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员