Accel-Sim is a widely used computer architecture simulator that models the behavior of modern NVIDIA GPUs in great detail. However, although Accel-Sim and the underlying GPGPU-Sim model many of the features of real GPUs, thus far it has not been able to track statistics separately per stream. Instead, Accel-Sim combines statistics (e.g., cycles and cache hits/misses) across all simultaneously running streams. This can prevent users from properly identifying the behavior of specific kernels and streams and potentially lead to incorrect conclusions. Thus, in this work we extend Accel-Sim's and GPGPU-Sim's statistic tracking support to track per-stream statistics. To validate this support, we designed a series of multi-stream microbenchmarks and checked their reported per-kernel, per-stream counts.


翻译:---- 研究论文摘要:Accel-Sim是广泛使用的计算机架构模拟器,以很高的精度模拟了现代NVIDIA GPU的行为。然而,虽然Accel-Sim和基础的GPGPU-Sim模拟了实际GPU的许多特性,但迄今为止还未能单独跟踪每个流的统计信息。相反,Accel-Sim将所有同时运行的流的统计数据(例如,循环计数和缓存命中/失误数)合并在一起。这可能会阻碍用户正确识别特定核函数和流的行为,有可能导致错误的结论。因此,在本研究中,我们扩展了Accel-Sim和GPGPU-Sim的统计跟踪的支持,以跟踪每个流的统计数据。为了验证支持性能,我们设计了一系列多流微基准测试,并检查它们报告的每个核函数、每个流的计数。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
25+阅读 · 2021年4月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
56+阅读 · 2020年1月10日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
Bayesian Segmentation Modeling of Epidemic Growth
Arxiv
0+阅读 · 2023年6月2日
Arxiv
12+阅读 · 2020年8月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员