Background: Several studies have highlighted the importance of considering sex differences in the diagnosis and treatment of Acute Coronary Syndrome (ACS). However, the identification of sex-specific risk markers in ACS sub-populations has been scarcely studied. The present study aims to explore machine learning (ML) models to identify in-hospital mortality markers for women and men in ACS sub-populations collected from a public database of electronic health records (EHR). Methods: We extracted 1,299 patients with ST-elevation myocardial infarction (STEMI) and 2,820 patients with non-ST-elevation myocardial infarction (NSTEMI) from the Medical Information Mart for Intensive Care (MIMIC)-III database. We trained and validated mortality prediction models and used an interpretability technique to identify sex-specific markers for each sub-population. Results: The models based on eXtreme Gradient Boosting (XGBoost) achieved the highest performance: area under the curve (AUC) = 0.94 (95\% CI:0.84-0.96) for STEMI and AUC = 0.94 (95\% CI:0.80-0.90) for NSTEMI. For STEMI, the top markers in women are chronic kidney failure, high heart rate, and age over 70 years. For men, the top markers are acute kidney failure, high troponin T levels, and age over 75 years. However, for NSTEMI, the top markers in women are low troponin levels, high urea levels, and age over 80 years. For men, the top markers are high heart rate, creatinine levels, and age over 70 years. Conclusions: Our results show possible significant and coherent sex-specific risk markers of different ACS sub-populations by interpreting ML mortality models trained on EHRs. Differences are observed in the identified risk markers between women and men, highlighting the importance of considering sex-specific markers in implementing more appropriate treatment strategies and better clinical outcomes.


翻译:背景:若干研究强调了在诊断和治疗急性冠状腺综合征(ACS)时考虑性别差异的重要性。然而,在ACS子人口群中确定性别特定风险标记的工作却很少研究。本研究旨在探索机器学习(ML)模型,以确定从电子健康记录公共数据库(EHR)中收集的ACS子人口在医院内男女的死亡标记。方法:我们从ST - 上升心肌梗塞(STEMI)中提取了1 299名病人和2 820名非ST - 上升心肌梗肿(NSTEMI)病人。本研究旨在探索机器学习(ML)模型,以确认医院内男女在医院内死亡标记(EHR)中存在性别差异。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
11+阅读 · 2018年7月31日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员