Automated decision-making systems, especially those based on natural language processing, are pervasive in our lives. They are not only behind the internet search engines we use daily, but also take more critical roles: selecting candidates for a job, determining suspects of a crime, diagnosing autism and more. Such automated systems make errors, which may be harmful in many ways, be it because of the severity of the consequences (as in health issues) or because of the sheer number of people they affect. When errors made by an automated system affect a population more than others, we call the system \textit{biased}. Most modern natural language technologies are based on artifacts obtained from enormous volumes of text using machine learning, namely language models and word embeddings. Since they are created by applying subsymbolic machine learning, mostly artificial neural networks, they are opaque and practically uninterpretable by direct inspection, thus making it very difficult to audit them. In this paper, we present a methodology that spells out how social scientists, domain experts, and machine learning experts can collaboratively explore biases and harmful stereotypes in word embeddings and large language models. Our methodology is based on the following principles: * focus on the linguistic manifestations of discrimination on word embeddings and language models, not on the mathematical properties of the models * reduce the technical barrier for discrimination experts%, be it social scientists, domain experts or other * characterize through a qualitative exploratory process in addition to a metric-based approach * address mitigation as part of the training process, not as an afterthought


翻译:自动决策系统,特别是基于自然语言处理的系统,已经渗透到我们生活的方方面面。它们不仅仅是我们每天使用的互联网搜索引擎背后的原因,而且还承担更加关键的角色:选择工作候选人,确定犯罪嫌疑人,诊断自闭症等等。这样的自动化系统会出现错误,这些错误可能在很多方面都具有害处,无论是因为后果的严重性(如健康问题)还是因为影响的人数之多。当自动化系统的错误影响到某个族群多于其他族群时,我们称该系统存在“偏见”。大多数现代自然语言技术是基于使用机器学习从大量文本中获取的人工智能,即语言模型和单词嵌入。由于它们是通过应用机器学习,主要是人工神经网络,来创建的,因此它们不透明,而且直接检查实际上不可解释,从而使审计它们变得非常困难。本文提出了一种方法论,阐述了社会科学家、领域专家和机器学习专家如何合作探索单词嵌入和大型语言模型中的偏见和有害刻板印象。我们的方法论基于以下原则:*关注言语上偏见和有害刻板印象的表现,而不是模型的数学属性*降低歧视专家,无论是社会科学家还是其他领域专家的技术障碍*通过定性的探索过程以及度量为基础的方法进行表征*将缓解作为训练过程的一部分,而不是作为事后思考

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员