Constructing reliable prediction sets is an obstacle for applications of neural models: Distribution-free conditional coverage is theoretically impossible, and the exchangeability assumption underpinning the coverage guarantees of standard split-conformal approaches is violated on domain shifts. Given these challenges, we propose and analyze a data-driven procedure for obtaining empirically reliable approximate conditional coverage, calculating unique quantile thresholds for each label for each test point. We achieve this via the strong signals for prediction reliability from KNN-based model approximations over the training set and approximations over constrained samples from the held-out calibration set. We demonstrate the potential for substantial (and otherwise unknowable) under-coverage with split-conformal alternatives with marginal coverage guarantees when not taking these distances and constraints into account with protein secondary structure prediction, grammatical error detection, sentiment classification, and fact verification, covering supervised sequence labeling, zero-shot sequence labeling (i.e., feature detection), document classification (with sparsity/interpretability constraints), and retrieval-classification, including class-imbalanced and domain-shifted settings.


翻译:建立可靠的预测数据集是运用神经模型的一个障碍:在理论上,无分配条件的有条件覆盖在理论上是不可能的,标准不同形式方法的保障覆盖面所依据的互换性假设在域变中被违反。鉴于这些挑战,我们提议并分析一种数据驱动程序,以获得经验上可靠的近似有条件覆盖,计算每个测试点每个标签的独特量化阈值。我们通过基于KNN的模型近似对培训数据集的预测可靠性的强烈信号和对持有校准集的受限样本的近似,实现这一点。我们展示了在不考虑蛋白质二次结构预测、语法误差检测、情绪分类和事实核实时,在不考虑这些距离和限制的情况下,存在具有边际覆盖保证的多种非正规替代方法的大规模(或无法识别的)覆盖不足的可能性,包括蛋白质二次结构预测、语法误差检测、情绪分类和事实核实,涵盖受监督的序列标签、零速序序列标签(即特征检测)、文件分类(带有磁性/易读性制约)和检索分类,包括等级平衡和域变位环境。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员