Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for the user to tune. Alternatively, parameters may be tuned implicitly within the proof of a worst-case approximation ratio or runtime bound. Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that data-driven algorithm design can lead to significant improvements in performance. This approach uses a training set of problem instances sampled from an unknown, application-specific distribution and returns a parameter setting with strong average performance on the training set. We provide a broadly applicable theory for deriving generalization guarantees that bound the difference between the algorithm's average performance over the training set and its expected performance. Our results apply no matter how the parameters are tuned, be it via an automated or manual approach. The challenge is that for many types of algorithms, performance is a volatile function of the parameters: slightly perturbing the parameters can cause large changes in behavior. Prior research has proved generalization bounds by employing case-by-case analyses of greedy algorithms, clustering algorithms, integer programming algorithms, and selling mechanisms. We uncover a unifying structure which we use to prove extremely general guarantees, yet we recover the bounds from prior research. Our guarantees apply whenever an algorithm's performance is a piecewise-constant, -linear, or -- more generally -- piecewise-structured function of its parameters. Our theory also implies novel bounds for voting mechanisms and dynamic programming algorithms from computational biology.


翻译:解算法通常具有可以影响运行时间和解决方案质量等性能衡量尺度的可计量参数。 对于实践中使用的许多算法来说,没有一个参数设置会接受有意义的最坏情况界限,因此参数可以让用户调试。 或者,参数可以在最坏情况近似比率或运行时间约束的证明中暗含调整。 但是,最坏情况可能很少或在实践中不存在。 越来越多的研究表明,数据驱动算法设计可以导致业绩的显著改进。 这个方法使用一组从未知的、具体应用的分布和返回一个在培训集中具有很强平均性能的参数设置来抽样的问题实例。 我们提供了一个广泛适用的理论,用于得出通用的保证参数在最坏情况接近比率比率或运行时间约束。 但是,我们的结果并不涉及参数是如何调整的,无论是通过自动化还是人工的方法。 挑战在于,对于许多类型的算法来说,性能是一个不稳定的参数函数:稍过粗的参数可以导致行为上的大幅变化。 以往的研究一旦确定了通用的参数设置,我们通过采用常规的算法分析,我们就会用一个稳定的算法分析,我们用来进行一个稳定性分析。

0
下载
关闭预览

相关内容

专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
106+阅读 · 2020年8月4日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年6月13日
Arxiv
5+阅读 · 2020年6月16日
VIP会员
相关VIP内容
专知会员服务
56+阅读 · 2021年4月12日
专知会员服务
50+阅读 · 2020年12月14日
迁移学习简明教程,11页ppt
专知会员服务
106+阅读 · 2020年8月4日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
168+阅读 · 2020年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员