Inherent morphological characteristics in objects may offer a wide range of plausible grasping orientations that obfuscates the visual learning of robotic grasping. Existing grasp generation approaches are cursed to construct discontinuous grasp maps by aggregating annotations for drastically different orientations per grasping point. Moreover, current methods generate grasp candidates across a single direction in the robot's viewpoint, ignoring its feasibility constraints. In this paper, we propose a novel augmented grasp map representation, suitable for pixel-wise synthesis, that locally disentangles grasping orientations by partitioning the angle space into multiple bins. Furthermore, we introduce the ORientation AtteNtive Grasp synthEsis (ORANGE) framework, that jointly addresses classification into orientation bins and angle-value regression. The bin-wise orientation maps further serve as an attention mechanism for areas with higher graspability, i.e. probability of being an actual grasp point. We report new state-of-the-art 94.71% performance on Jacquard, with a simple U-Net using only depth images, outperforming even multi-modal approaches. Subsequent qualitative results with a real bi-manual robot validate ORANGE's effectiveness in generating grasps for multiple orientations, hence allowing planning grasps that are feasible.


翻译:物体的固有形态特征可能提供一系列令人信服的掌握方向,使机器人掌握的视觉学习模糊不清。 现有的掌握的生成方法被诅咒,通过对每个掌握点截然不同的方向的批注来构建不连贯的掌握的地图。 此外, 目前的方法会从机器人的观点中产生一个单一的方向来抓取候选人, 忽视其可行性限制 。 在本文中, 我们提议了一个新的增强的掌握地图代表, 适合像素合成, 当地通过将角空间分割成多个文件夹来分解捕捉方向。 此外, 我们引入了“ 旋转动动动动引力合成( ORANGE) ” 框架, 该框架共同将分类到方向文件夹和角度值回归。 双向方向的定位图进一步成为机器人更能捕捉的地区的关注机制, 也就是说, 有可能成为实际的掌握点 。 我们在Jacquldard上报告新的状态94.71%的性能, 使用简单的UNet, 仅使用深度图像, 表现甚至多式的方法。 之后的定性结果是, 将真实的双向规划结果, 能够产生真正的双向。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
专知会员服务
61+阅读 · 2021年3月12日
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
Top
微信扫码咨询专知VIP会员