We initiate the study of the algorithmic problem of certifying lower bounds on the discrepancy of random matrices: given an input matrix $A \in \mathbb{R}^{m \times n}$, output a value that is a lower bound on $\mathsf{disc}(A) = \min_{x \in \{\pm 1\}^n} ||Ax||_\infty$ for every $A$, but is close to the typical value of $\mathsf{disc}(A)$ with high probability over the choice of a random $A$. This problem is important because of its connections to conjecturally-hard average-case problems such as negatively-spiked PCA, the number-balancing problem and refuting random constraint satisfaction problems. We give the first polynomial-time algorithms with non-trivial guarantees for two main settings. First, when the entries of $A$ are i.i.d. standard Gaussians, it is known that $\mathsf{disc} (A) = \Theta (\sqrt{n}2^{-n/m})$ with high probability. Our algorithm certifies that $\mathsf{disc}(A) \geq \exp(- O(n^2/m))$ with high probability. As an application, this formally refutes a conjecture of Bandeira, Kunisky, and Wein on the computational hardness of the detection problem in the negatively-spiked Wishart model. Second, we consider the integer partitioning problem: given $n$ uniformly random $b$-bit integers $a_1, \ldots, a_n$, certify the non-existence of a perfect partition, i.e. certify that $\mathsf{disc} (A) \geq 1$ for $A = (a_1, \ldots, a_n)$. Under the scaling $b = \alpha n$, it is known that the probability of the existence of a perfect partition undergoes a phase transition from 1 to 0 at $\alpha = 1$; our algorithm certifies the non-existence of perfect partitions for some $\alpha = O(n)$. We also give efficient non-deterministic algorithms with significantly improved guarantees. Our algorithms involve a reduction to the Shortest Vector Problem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年7月21日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员