Recent advances in one-shot semi-supervised learning have lowered the barrier for deep learning of new applications. However, the state-of-the-art for semi-supervised learning is slow to train and the performance is sensitive to the choices of the labeled data and hyper-parameter values. In this paper, we present a one-shot semi-supervised learning method that trains up to an order of magnitude faster and is more robust than state-of-the-art methods. Specifically, we show that by combining semi-supervised learning with a one-stage, single network version of self-training, our FROST methodology trains faster and is more robust to choices for the labeled samples and changes in hyper-parameters. Our experiments demonstrate FROST's capability to perform well when the composition of the unlabeled data is unknown; that is when the unlabeled data contain unequal numbers of each class and can contain out-of-distribution examples that don't belong to any of the training classes. High performance, speed of training, and insensitivity to hyper-parameters make FROST the most practical method for one-shot semi-supervised training. Our code is available at https://github.com/HelenaELiu/FROST.


翻译:以一发半监督式教学的最新进展降低了深入学习新应用程序的障碍。 但是,用于半监督式学习的先进技术培训速度缓慢,而且性能对标签数据和超参数值的选择十分敏感。 在本文中,我们展示了一种单发半监督式学习方法,这种半监督式学习方法可以使培训达到一个数量级,而且比最先进的方法更加有力。具体地说,我们通过将半监督式学习与一个阶段、单一的自我培训网络版本相结合,表明我们的FROST方法培训速度更快,对于标签式样本的选择和超参数的变化而言,其性能更强。我们的实验表明,FROST在未标数据构成不明时能够很好地运行;这就是,无标签式数据包含每个班级的不平等数字,并且能够包含不属于任何培训班级的外部分配实例。高性业绩、培训速度和对超光度参数的敏感度方法使得FROST、标签式样本和超光度度度度度度参数的选取的样本和超度参数。我们的实验表明,FROST有能力在未标数据构成的情况下进行最实用的、MHU/FUST/O的半监督/FSIST。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Co-Training for Semi-Supervised Image Segmentation
Revisiting CycleGAN for semi-supervised segmentation
Arxiv
3+阅读 · 2019年8月30日
Arxiv
5+阅读 · 2018年10月23日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员