The log-logistic regression model is one of the most commonly used accelerated failure time (AFT) models in survival analysis, for which statistical inference methods are mainly established under the frequentist framework. Recently, Bayesian inference for log-logistic AFT models using Markov chain Monte Carlo (MCMC) techniques has also been widely developed. In this work, we develop an alternative approach to MCMC methods and infer the parameters of the log-logistic AFT model via a mean-field variational Bayes (VB) algorithm. A piece-wise approximation technique is embedded in deriving the update equations in the VB algorithm to achieve conjugacy. The proposed VB algorithm is evaluated and compared with typical frequentist inferences using simulated data under various scenarios, and a publicly available dataset is employed for illustration. We demonstrate that the proposed VB algorithm can achieve good estimation accuracy and is not sensitive to sample sizes, censoring rates, and prior information.


翻译:log-logistic回归模型是生存分析中最常用的加速失效时间(AFT)模型之一,统计推断方法主要是在频率主义框架下建立的。最近,也已经广泛发展了使用马尔科夫链蒙特卡罗(MCMC)技术进行log-logistic AFT模型的贝叶斯推断。在本文中,我们提出一种MCMC方法的替代方法,并通过均值场变分贝叶斯(VB)算法推断log-logistic AFT模型的参数。嵌入分段逼近技术以推导VB算法中的更新方程来实现共轭。使用模拟数据在不同情况下评估并与典型的频率主义推断进行比较,并使用公开数据集进行说明。我们证明了提出的VB算法可以实现良好的估计精度,并且对样本量,截断率和先验信息不敏感。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年10月11日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员