Relation extraction is an important task in structuring content of text data, and becomes especially challenging when learning with weak supervision---where only a limited number of labeled sentences are given and a large number of unlabeled sentences are available. Most existing work exploits unlabeled data based on the ideas of self-training (i.e., bootstrapping a model) and multi-view learning (e.g., ensembling multiple model variants). However, these methods either suffer from the issue of semantic drift, or do not fully capture the problem characteristics of relation extraction. In this paper, we leverage a key insight that retrieving sentences expressing a relation is a dual task of predicting relation label for a given sentence---two tasks are complementary to each other and can be optimized jointly for mutual enhancement. To model this intuition, we propose DualRE, a principled framework that introduces a retrieval module which is jointly trained with the original relation prediction module. In this way, high-quality samples selected by retrieval module from unlabeled data can be used to improve prediction module, and vice versa. Experimental results\footnote{\small Code and data can be found at \url{https://github.com/INK-USC/DualRE}.} on two public datasets as well as case studies demonstrate the effectiveness of the DualRE approach.


翻译:文本数据内容结构化是一项重要任务,当在监管不力的情况下学习时,关系提取就变得特别具有挑战性,在这种情况下,只有为数有限的有标签的句子,而且有大量没有标签的句子。大多数现有工作利用基于自我培训(如制靴模型)和多视图学习(如组合多个模型变量)理念的无标签数据。然而,这些方法要么是受到语义漂移问题的影响,要么没有完全捕捉关系提取的问题特征。在本文中,我们利用一个关键洞察力,即重取表示某种关系的句子是预测特定句子关系标签的双重任务。2项任务相辅相成,可以共同优化,以相互加强。为这种直观模型,我们建议Dalurere是一个原则框架,引入一个检索模块,该模块与原始关系预测模块共同培训。在未贴标签的数据提取模块中选择的高品质样本,可用于改进预测模块,反之,我们利用这一关键洞察力。实验性结果/Koforal 代码和Rireal 数据作为案例研究。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果关联学习,Causal Relational Learning
专知会员服务
179+阅读 · 2020年4月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员