Modern inexpensive imaging sensors suffer from inherent hardware constraints which often result in captured images of poor quality. Among the most common ways to deal with such limitations is to rely on burst photography, which nowadays acts as the backbone of all modern smartphone imaging applications. In this work, we focus on the fact that every frame of a burst sequence can be accurately described by a forward (physical) model. This in turn allows us to restore a single image of higher quality from a sequence of low quality images as the solution of an optimization problem. Inspired by an extension of the gradient descent method that can handle non-smooth functions, namely the proximal gradient descent, and modern deep learning techniques, we propose a convolutional iterative network with a transparent architecture. Our network, uses a burst of low quality image frames and is able to produce an output of higher image quality recovering fine details which are not distinguishable in any of the original burst frames. We focus both on the burst photography pipeline as a whole, i.e. burst demosaicking and denoising, as well as on the traditional Gaussian denoising task. The developed method demonstrates consistent state-of-the art performance across the two tasks and as opposed to other recent deep learning approaches does not have any inherent restrictions either to the number of frames or their ordering.


翻译:现代低价成像传感器受到固有的硬件限制,往往导致所拍摄的图像质量差。处理这些限制的最常见方式是依赖爆破摄影,如今,这是所有现代智能成像应用的支柱。在这项工作中,我们侧重于一个事实,即爆破序列的每个框架都可以用前方(物理)模型准确描述。这反过来又使我们能够从低质量图像序列中恢复一个质量更高的单一图像,作为优化问题的解决方案。受能够处理非吸附功能的梯度下降法的延伸,即近似梯度梯度下降和现代深层学习技术的启发,我们建议建立一个具有透明架构的交替网络。我们的网络使用低质量图像框架的爆发,能够产生更高图像质量的输出,恢复任何原始爆破框架都无法辨别的精细细节。我们既关注爆破碎的摄影管道,又关注整个优化问题的解决方案,即爆破碎的淡化和淡化,以及传统的高斯脱色任务,我们没有提出一个具有透明结构的同步性迭代网络。我们的网络使用低质图像框架,能够产生一个在两个任务和深层学习中的任何内在限制。

3
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
Generative Adversarial Networks: A Survey and Taxonomy
Single-frame Regularization for Temporally Stable CNNs
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
3+阅读 · 2017年11月20日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员