MoCo is effective for unsupervised image representation learning. In this paper, we propose VideoMoCo for unsupervised video representation learning. Given a video sequence as an input sample, we improve the temporal feature representations of MoCo from two perspectives. First, we introduce a generator to drop out several frames from this sample temporally. The discriminator is then learned to encode similar feature representations regardless of frame removals. By adaptively dropping out different frames during training iterations of adversarial learning, we augment this input sample to train a temporally robust encoder. Second, we use temporal decay to model key attenuation in the memory queue when computing the contrastive loss. As the momentum encoder updates after keys enqueue, the representation ability of these keys degrades when we use the current input sample for contrastive learning. This degradation is reflected via temporal decay to attend the input sample to recent keys in the queue. As a result, we adapt MoCo to learn video representations without empirically designing pretext tasks. By empowering the temporal robustness of the encoder and modeling the temporal decay of the keys, our VideoMoCo improves MoCo temporally based on contrastive learning. Experiments on benchmark datasets including UCF101 and HMDB51 show that VideoMoCo stands as a state-of-the-art video representation learning method.
翻译:在本文中, 我们提议 VideoMoCo 用于不受监督的视频演示学习 。 根据一个视频序列作为输入样本, 我们从两个角度改进 MoCo 的时间特征显示 。 首先, 我们引入一个生成器, 从这个样本中退出几个框架 。 然后, 歧视者可以将相似的特征表达方式编码, 不论框架清除 。 通过在对抗性学习的训练迭代中适应性地退出不同的框架, 我们增加这个输入样本, 以训练一个时间性强的编码器 。 其次, 在计算对比性损失时, 我们用时间衰减来模拟存储队列中的键变色 。 随着按键收缩后的势头编码器更新, 这些键的表达能力会降低。 当我们使用当前输入样本进行对比性学习时, 这种退化会通过时间衰减来将输入样本编码到最近的键组。 结果, 我们调整MoCo 以学习视频表达方式, 而不以经验性地设计借口任务 。 通过增强编码器的时间性坚固度和模拟键的缩缩缩缩缩图, 我们的视频MoCoC 学习了MD- 的缩图象学 。