The task of multi-label learning is to predict a set of relevant labels for the unseen instance. Traditional multi-label learning algorithms treat each class label as a logical indicator of whether the corresponding label is relevant or irrelevant to the instance, i.e., +1 represents relevant to the instance and -1 represents irrelevant to the instance. Such label represented by -1 or +1 is called logical label. Logical label cannot reflect different label importance. However, for real-world multi-label learning problems, the importance of each possible label is generally different. For the real applications, it is difficult to obtain the label importance information directly. Thus we need a method to reconstruct the essential label importance from the logical multilabel data. To solve this problem, we assume that each multi-label instance is described by a vector of latent real-valued labels, which can reflect the importance of the corresponding labels. Such label is called numerical label. The process of reconstructing the numerical labels from the logical multi-label data via utilizing the logical label information and the topological structure in the feature space is called Label Enhancement. In this paper, we propose a novel multi-label learning framework called LEMLL, i.e., Label Enhanced Multi-Label Learning, which incorporates regression of the numerical labels and label enhancement into a unified framework. Extensive comparative studies validate that the performance of multi-label learning can be improved significantly with label enhancement and LEMLL can effectively reconstruct latent label importance information from logical multi-label data.


翻译:多标签学习的任务是预测一组隐形实例的相关标签。传统的多标签学习算法将每个类标签视为一个逻辑指标,表明对应标签是否与实例相关或无关,即+1代表与实例相关,-1代表与实例无关。由 -1 或+1 表示的标签被称为逻辑标签。逻辑标签不能反映不同的标签重要性。然而,对于真实世界多标签学习问题,每个可能的标签的重要性一般不同。对于真正的应用程序,很难直接获得标签重要性信息。因此我们需要一种方法,从逻辑多标签数据中重建基本标签重要性。为了解决这个问题,我们假设每个多标签实例都由潜在真实值标签的矢量来描述,这可以反映相应标签的重要性。这种标签被称为数字标签。对于通过使用逻辑标签信息从逻辑多标签数据中重建数字标签的重要性和地貌空间的表层结构,可以称为 Label Enstrucil 强化。在本文中,我们建议一个创新的多标签的多标签的升级数据重要性,用LEMLLLLLLLLLLL的升级学习基础。我们建议,从新的多标签的升级化的升级化的多标签的升级学习, 。

4
下载
关闭预览

相关内容

专知会员服务
112+阅读 · 2019年12月24日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员