Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key when applying HE to FL. For the naive HE scheme, the server is set to master the secret key. Such a setting causes a serious problem that if the server does not conduct aggregation before decryption, a chance is left for the server to access the user's update. Inspired by the two challenges, we propose FedXGB, a federated extreme gradient boosting (XGBoost) scheme supporting forced aggregation. FedXGB mainly achieves the following two breakthroughs. First, FedXGB involves a new HE based secure aggregation scheme for FL. By combining the advantages of secret sharing and homomorphic encryption, the algorithm can solve the second challenge mentioned above, and is robust to the user dropout. Then, FedXGB extends FL to a new machine learning model by applying the secure aggregation scheme to the classification and regression tree building of XGBoost. Moreover, we conduct a comprehensive theoretical analysis and extensive experiments to evaluate the security, effectiveness, and efficiency of FedXGB. The results indicate that FedXGB achieves less than 1% accuracy loss compared with the original XGBoost, and can provide about 23.9% runtime and 33.3% communication reduction for HE based model update aggregation of FL.


翻译:最近,Google和其他24个机构提议了一系列对Federate 学习(FL)的公开挑战,其中包括应用扩展和同质加密(HE),前者旨在扩大FL的适用机器学习模式。后者侧重于在将HE应用到FL时谁掌握秘密钥匙。对于天真的HE计划,服务器被设置来掌握秘密钥匙。这种设置造成了一个严重问题,即如果服务器在解密前不进行聚合,服务器就有机会访问用户更新。受这两个挑战的启发,我们提议FDXGB,即一个支持强制集合的联结极端梯度加速(XGB3)计划。FDXGBGB主要实现以下两个突破。首先,FDXGBGBGB涉及一个新的基于H的安全聚合计划。通过将秘密共享和同质加密的优势结合起来,算法可以解决上述第二个挑战,并且对用户的退出具有强大力。随后,FDXGBGBGB将FU更新到一个新的机器学习模式,将安全合并计划应用于X的分类和倒退树结构结构建设 XOOOOst。我们比FGBB的理论分析结果要低于FBBB%。

1
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
Federated Learning for Mobile Keyboard Prediction
Arxiv
4+阅读 · 2018年11月8日
Arxiv
4+阅读 · 2018年4月26日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员