Task-oriented dialog systems enable users to accomplish tasks using natural language. State-of-the-art systems respond to users in the same way regardless of their personalities, although personalizing dialogues can lead to higher levels of adoption and better user experiences. Building personalized dialog systems is an important, yet challenging endeavor and only a handful of works took on the challenge. Most existing works rely on supervised learning approaches and require laborious and expensive labeled training data for each user profile. Additionally, collecting and labeling data for each user profile is virtually impossible. In this work, we propose a novel framework, P-ToD, to personalize task-oriented dialog systems capable of adapting to a wide range of user profiles in an unsupervised fashion using a zero-shot generalizable reward function. P-ToD uses a pre-trained GPT-2 as a backbone model and works in three phases. Phase one performs task-specific training. Phase two kicks off unsupervised personalization by leveraging the proximal policy optimization algorithm that performs policy gradients guided by the zero-shot generalizable reward function. Our novel reward function can quantify the quality of the generated responses even for unseen profiles. The optional final phase fine-tunes the personalized model using a few labeled training examples. We conduct extensive experimental analysis using the personalized bAbI dialogue benchmark for five tasks and up to 180 diverse user profiles. The experimental results demonstrate that P-ToD, even when it had access to zero labeled examples, outperforms state-of-the-art supervised personalization models and achieves competitive performance on BLEU and ROUGE metrics when compared to a strong fully-supervised GPT-2 baseline


翻译:任务导向的对话系统可以使用户通过自然语言完成任务。最先进的系统不考虑用户的个性,虽然个性化的对话可以提高用户采纳度和更好的用户体验。构建个性化的对话系统是一个重要但具有挑战性的任务,只有少数几项工作承担了这一挑战。大多数现有的工作依赖于监督学习的方法,并需要为每个用户配置的烦琐和昂贵的标记训练数据。此外,为每个用户配置和标记数据事实上是不可能的。在这项工作中,我们提出了一个新的框架P-ToD,以一种无人监督的方式通过零样本可推广的奖励函数来个性化任务导向的对话系统,以适应各种用户个人信息。 P-ToD使用预先训练的GPT-2作为骨干模型,以三个阶段工作。第一阶段执行任务特定的训练。第二阶段通过利用近端策略优化算法启动无人监督的个性化,该算法执行基于零样本可推广奖励函数指导的策略梯度。我们的新型奖励函数可以为未见过的用户个人信息量化生成的回复的质量。可选的最后一阶段使用几个已标记的训练示例对个性化模型进行微调。我们使用涉及五个任务和多达180个不同用户个人信息的个性化bAbI对话基准进行了广泛的实验分析。实验结果表明,即使在零标记示例的情况下,P-ToD也优于最先进的监督个性化模型,并且相对于强有力的完全监督GPT-2基线在BLEU和ROUGE指标上获得了有竞争力的表现。

0
下载
关闭预览

相关内容

【WWW2021】合作记忆网络的个性化任务导向对话系统
专知会员服务
14+阅读 · 2021年2月17日
近期必读的六篇 EMNLP 2020【知识图谱】相关论文和代码
专知会员服务
41+阅读 · 2020年11月10日
专知会员服务
29+阅读 · 2020年9月18日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
55+阅读 · 2020年2月10日
专知会员服务
86+阅读 · 2020年1月20日
EMNLP 2022 | ClidSum: 跨语言对话摘要
PaperWeekly
3+阅读 · 2022年11月25日
SIGIR2022 | 从Prompt的角度考量强化学习推荐系统
机器学习与推荐算法
1+阅读 · 2022年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
国家自然科学基金
31+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
VIP会员
相关基金
国家自然科学基金
31+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员