We provide a series of results for unsupervised learning with autoencoders. Specifically, we study shallow two-layer autoencoder architectures with shared weights. We focus on three generative models for data that are common in statistical machine learning: (i) the mixture-of-gaussians model, (ii) the sparse coding model, and (iii) the sparsity model with non-negative coefficients. For each of these models, we prove that under suitable choices of hyperparameters, architectures, and initialization, autoencoders learned by gradient descent can successfully recover the parameters of the corresponding model. To our knowledge, this is the first result that rigorously studies the dynamics of gradient descent for weight-sharing autoencoders. Our analysis can be viewed as theoretical evidence that shallow autoencoder modules indeed can be used as feature learning mechanisms for a variety of data models, and may shed insight on how to train larger stacked architectures with autoencoders as basic building blocks.


翻译:我们为与自动编码器进行不受监督的学习提供了一系列结果。 具体地说, 我们研究具有共享重量的浅层二层自动编码器结构。 我们侧重于统计机器学习中常见数据的三种基因模型:(一) 双层自动编码器的混合模型,(二) 稀少的编码模型,(三) 带有非负系数的宽度模型。 对于其中每一种模型, 我们证明, 在对超参数、建筑和初始化的适当选择下, 梯度下沉学的自动编码器可以成功地恢复相应模型的参数。 据我们所知, 这是严格研究权重共享自动编码器的梯度下降动态的第一个结果。 我们的分析可以被视为理论证据, 浅层自动编码器模块确实可以用作各种数据模型的特征学习机制, 并可能揭示如何用自动编码器作为基本建筑块来培训更大的堆积结构。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
【干货51页PPT】深度学习理论理解探索
专知会员服务
59+阅读 · 2019年12月24日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
56+阅读 · 2019年10月17日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Energy Markets
Arxiv
8+阅读 · 2019年4月10日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员