It is well-known that classical optical cavities can exhibit localized phenomena associated to scattering resonances, leading to numerical instabilities in approximating the solution. This result can be established via the ``quasimodes to resonances'' argument from the black-box scattering framework. Those localized phenomena concentrate at the inner boundary of the cavity and are called whispering gallery modes. In this paper we investigate scattering resonances for unbounded transmission problems with sign-changing coefficient (corresponding to optical cavities with negative optical properties, for example made of metamaterials). Due to the change of sign of optical properties, previous results cannot be applied directly, and interface phenomena at the metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We establish the existence of scattering resonances for arbitrary two-dimensional smooth metamaterial cavities. The proof relies on an asymptotic characterization of the resonances, and showing that problems with sign-changing coefficient naturally fit the black box scattering framework. Our asymptotic analysis reveals that, depending on the metamaterial's properties, scattering resonances situated closed to the real axis are associated to surface plasmons. Examples for several metamaterial cavities are provided.
翻译:众所周知, 古典光学洞穴可以展示与分散共振相关的局部现象, 从而在接近解决方案时导致数字不稳定。 这个结果可以通过“ qusimodes” 来确定, 从黑盒散射框架中的共振参数。 这些局部现象集中到洞穴的内部边界, 被称为低声传道模式。 在本文中, 我们用信号变化系数( 对应于负光学特性的光学洞穴, 例如由元材料制成的) 来调查无线传输问题的分散共振现象。 由于光学特性的标志改变, 先前的结果无法直接应用, 元物质- 电介质界面( 如所谓的表面质谱) 的界面现象出现 。 我们为任意的二维光滑的基因洞建立了分散共振现象的存在 。 证据依赖于对信号变化系数的零度描述, 并显示符号变化系数的自然匹配黑盒散射框架存在问题 。 我们所处的模型分析, 显示, 与数位的地基质分析, 显示, 我们的模型的模型显示, 向地面方向 显示, 我们的封闭的模型分析, 显示, 显示, 提供了一些 质 的 数据流 。