Conventional Learning-to-Rank (LTR) methods optimize the utility of the rankings to the users, but they are oblivious to their impact on the ranked items. However, there has been a growing understanding that the latter is important to consider for a wide range of ranking applications (e.g. online marketplaces, job placement, admissions). To address this need, we propose a general LTR framework that can optimize a wide range of utility metrics (e.g. NDCG) while satisfying fairness of exposure constraints with respect to the items. This framework expands the class of learnable ranking functions to stochastic ranking policies, which provides a language for rigorously expressing fairness specifications. Furthermore, we provide a new LTR algorithm called Fair-PG-Rank for directly searching the space of fair ranking policies via a policy-gradient approach. Beyond the theoretical evidence in deriving the framework and the algorithm, we provide empirical results on simulated and real-world datasets verifying the effectiveness of the approach in individual and group-fairness settings.


翻译:常规学习到兰克(LTR)方法优化了排名对用户的效用,但却忽视了排名对排名项目的影响,然而,人们日益认识到,后者对于考虑范围广泛的排名应用(例如在线市场、职位安排、招生)非常重要。为解决这一需要,我们提议了一个通用的LTR框架,该框架可以优化广泛的通用指标(例如NDCG),同时满足项目暴露限制的公平性。这个框架将可学习的排名功能的等级扩展为随机排序政策,为严格表达公平性规格提供了语言。此外,我们提供了一种新的LTR算法,称为Fair-PG-Rank,用于通过注重政策的方法直接探索公平排名政策的空间。除了从理论证据中推导出框架和算法外,我们还提供模拟和真实世界数据集的经验结果,以核实个人和群体公平环境中的方法的有效性。

1
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
275+阅读 · 2020年5月8日
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
54+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
24+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员