Securing safe-driving for connected and autonomous vehicles (CAVs) continues to be a widespread concern despite various sophisticated functions delivered by artificial intelligence for in-vehicle devices. Besides, diverse malicious network attacks become ubiquitous along with the worldwide implementation of the Internet of Vehicles, which exposes a range of reliability and privacy threats for managing data in CAV networks. Combined with the fact that the capability of existing CAVs in handling intensive computation tasks is limited, this implies a need for designing an efficient assessment system to guarantee autonomous driving safety without compromising data security. Motivated by this, in this article, we propose a novel framework, namely Blockchain-enabled intElligent Safe-driving assessmenT (BEST), that offers a smart and reliable approach for conducting safe driving supervision while protecting vehicular information. Specifically, a promising solution that exploits a long short-term memory model is introduced to assess the safety level of the moving CAVs. Then, we investigate how a distributed blockchain obtains adequate trustworthiness and robustness for CAV data by adopting a byzantine fault tolerance-based delegated proof-of-stake consensus mechanism. Simulation results demonstrate that our presented BEST gains better data credibility with a higher prediction accuracy for vehicular safety assessment when compared with existing schemes. Finally, we discuss several open challenges that need to be addressed in future CAV networks.
翻译:尽管人工智能为车辆装置提供了各种复杂的功能,但确保连接和自主车辆的安全驾驶仍然是人们广泛关注的问题,此外,各种恶意网络袭击随着全球实施车辆互联网而变得无处不在,这暴露了对控制车辆网络数据管理的一系列可靠性和隐私威胁。具体地说,采用了一种利用长期短期记忆模型评估移动计算机飞行器安全水平的有希望的解决办法。然后,我们调查一个分布式的阻塞链如何在不损害数据安全的情况下获得足够的信任和稳健的CAV数据,为此,我们在本篇文章中提出了一个新框架,即由磁链驱动的隐性安全驾驶评估T(BEST),为在保护车辆网络信息的同时开展安全驾驶监督提供了明智和可靠的方法。具体地说,利用一个长期的短期记忆模型来评估移动式计算机飞行器的安全水平。我们通过采用一种基于容忍度的委托授权的智能安全驾驶评估(BEST),提出了一种明智和可靠的方法。当我们以更高的信任度来评估我们未来的安全度时,需要用一个更好的、更准确性的数据来展示我们现有的安全性。