Studies often estimate associations between an outcome and multiple variates. For example, studies of diagnostic test accuracy estimate sensitivity and specificity, and studies of predictive and prognostic factors typically estimate associations for multiple factors. Meta-analysis is a family of statistical methods for synthesizing estimates across multiple studies. Multivariate models exist that account for within-study correlations and between-study heterogeneity. The number of parameters that must be estimated in existing models is quadratic in the number of variates (e.g., risk factors). This means they may not be usable if data are sparse with many variates and few studies. We propose a new model that addresses this problem by approximating a variance-covariance matrix that models within-study correlation and between-study heterogeneity in a low-dimensional space using random projection. The number of parameters that must be estimated in this model scales linearly in the number of variates and quadratically in the dimension of the approximating space, making estimation more tractable. We performed a simulation study to compare coverage, bias, and precision of estimates made using the proposed model to those from univariate meta-analyses. We demonstrate the method using data from an ongoing systematic review on predictors of pain and function after total knee arthroplasty. Finally, we suggest a decision tool to help analysts choose among available models.


翻译:例如,诊断性测试精度估计的敏感性和特殊性的研究,以及预测性和预测性因素的研究,通常估计多种因素的关联性。元分析是多种研究综合估计的统计方法的组合。多种变式模型存在,考虑到研究内部的相互关系和研究之间的异质性。在现有模型中必须估计的参数数量在变异数量上是二次的(例如,风险因素)。这意味着,如果数据缺乏许多变异和研究很少,它们可能无法使用。我们提出了一个新的模型,通过对差异和变异矩阵进行近似化来解决这个问题,该矩阵是研究内部和研究之间使用随机预测来综合各种估计数的统计方法。在这个模型中,必须用线性估计的变异和变异性在适应空间的方面(例如,风险因素)。这意味着,如果数据缺乏许多变异和研究,那么它们可能无法使用。我们用一个新的模型来比较覆盖面、偏差和精确度来解决这个问题。我们用一个不同的变异性矩阵模型来比较了这一问题。我们从研究内部的关联性模型,最后用一个系统分析功能用一个从现有的模型来显示从我们从现在的模型到现在的预测性的分析结果。我们用一个从现在的模型向最后的模型来显示一种分析结果。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
已删除
将门创投
7+阅读 · 2019年10月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
0+阅读 · 2021年4月2日
Arxiv
5+阅读 · 2020年12月10日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
240+阅读 · 2020年4月19日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员