We introduce and develop moment propagation for approximate Bayesian inference. This method can be viewed as a variance correction for mean field variational Bayes which tends to underestimate posterior variances. Focusing on the case where the model is described by two sets of parameter vectors, we develop moment propagation algorithms for linear regression, multivariate normal, and probit regression models. We show for the probit regression model that moment propagation empirically performs reasonably well for several benchmark datasets. Finally, we discuss theoretical gaps and future extensions. In the supplementary material we show heuristically why moment propagation leads to appropriate posterior variance estimation, for the linear regression and multivariate normal models we show precisely why mean field variational Bayes underestimates certain moments, and prove that our moment propagation algorithm recovers the exact marginal posterior distributions for all parameters, and for probit regression we show that moment propagation provides asymptotically correct posterior means and covariance estimates.
翻译:我们引入并开发了近似贝叶斯推断的瞬间传播。 这种方法可以被视为对平均场外变异贝贝贝的偏差校正。 偏向于模型被两组参数矢量描述的情况, 我们开发了线性回归、 多变量正常和 probit 回归模型的瞬间传播算法。 我们为 probit 回归模型显示, 时间的传播实验为几个基准数据集取得了合理的良好表现。 最后, 我们讨论理论差距和未来扩展。 在补充材料中, 我们用粗略的方法显示, 时间传播导致适当的场外变异估计的原因, 是因为线性回归和多变量正常模型, 我们精确地显示为什么 表示野外变异贝贝贝某些时刻低估了某些时刻, 并且证明, 我们的瞬间演算法恢复了所有参数的精确边缘后端后方分布, 以及正位回归则显示, 瞬间传播提供了以正调的后端手段和变量估计。