Learning neural networks using only few available information is an important ongoing research topic with tremendous potential for applications. In this paper, we introduce a powerful regularizer for the variational modeling of inverse problems in imaging. Our regularizer, called patch normalizing flow regularizer (patchNR), involves a normalizing flow learned on small patches of very few images. In particular, the training is independent of the considered inverse problem such that the same regularizer can be applied for different forward operators acting on the same class of images. By investigating the distribution of patches versus those of the whole image class, we prove that our model is indeed a MAP approach. Numerical examples for low-dose and limited-angle computed tomography (CT) as well as superresolution of material images demonstrate that our method provides very high quality results. The training set consists of just six images for CT and one image for superresolution. Finally, we combine our patchNR with ideas from internal learning for performing superresolution of natural images directly from the low-resolution observation without knowledge of any high-resolution image.
翻译:仅使用少量可用信息的学习神经网络是一个正在进行的重要研究课题,具有巨大的应用潜力。 在本文中, 我们引入了一种强大的常规化器, 用于对成像中反问题进行变异模型。 我们的常规化器叫做补丁正常流系统( patchNR ), 涉及在极少数图像的小片中学习的正常化流程。 特别是, 培训与被考虑的反向问题无关, 使不同的前方操作者能够在同一类图像上应用同样的常规化系统。 通过调查补丁的分布和整个图像类的分布, 我们证明我们的模型确实是一种MAP 方法。 低剂量和有限角计算成形图像的数值示例以及材料图像的超级分辨率表明, 我们的方法提供了非常高质量的结果。 培训集只包括六张CT图像和一张超分辨率图像。 最后, 我们将我们的补丁NR与从内部学习中获取的想法结合起来, 直接从任何高分辨率图像的低分辨率观测中进行超分辨率的自然图像的超分辨率。