We propose derivative-informed neural operators (DINOs), a general family of neural networks to approximate operators as infinite-dimensional mappings from input function spaces to output function spaces or quantities of interest. After discretizations both inputs and outputs are high-dimensional. We aim to approximate not only the operators with improved accuracy but also their derivatives (Jacobians) with respect to the input function-valued parameter to empower derivative-based algorithms in many applications, e.g., Bayesian inverse problems, optimization under parameter uncertainty, and optimal experimental design. The major difficulties include the computational cost of generating derivative training data and the high dimensionality of the problem leading to large training cost. To address these challenges, we exploit the intrinsic low-dimensionality of the derivatives and develop algorithms for compressing derivative information and efficiently imposing it in neural operator training yielding derivative-informed neural operators. We demonstrate that these advances can significantly reduce the costs of both data generation and training for large classes of problems (e.g., nonlinear steady state parametric PDE maps), making the costs marginal or comparable to the costs without using derivatives, and in particular independent of the discretization dimension of the input and output functions. Moreover, we show that the proposed DINO achieves significantly higher accuracy than neural operators trained without derivative information, for both function approximation and derivative approximation (e.g., Gauss-Newton Hessian), especially when the training data are limited.


翻译:我们提出衍生信息神经操作员(DINOs),这是神经网络的普通组合,将操作员视为从输入功能空间到输出功能空间或兴趣量的无限范围绘图。在分解投入和产出后都是高维的。我们不仅旨在将操作员的精度提高,而且将其衍生物(Jacobians)与输入功能价值值参数相近,以便在许多应用中赋予衍生物根据算法的能力,例如Bayesian反向问题,在参数不确定性和最佳实验设计下优化。主要困难包括生成衍生物培训数据的计算成本,以及导致大量培训成本的高度多维度。为了应对这些挑战,我们利用衍生物的内在的低维度算法来压缩衍生物信息,并有效地将其引入产生衍生物知情神经操作员的神经操作员培训中。我们证明这些进步可以大幅降低数据生成和大规模问题培训的成本(例如,非线性状态的PDE参数地图),使成本在不使用衍生物的情况下处于边际或可与成本相比的高维度。我们利用衍生物的衍生物的计算方法,并且特别独立地标化了离质数据操作者的输出功能。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
115+阅读 · 2022年4月21日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
22+阅读 · 2022年2月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员