** Deep reinforcement learning (RL) has achieved breakthrough results on many tasks, but agents often fail to generalize beyond the environment they were trained in. As a result, deep RL algorithms that promote generalization are receiving increasing attention. However, works in this area use a wide variety of tasks and experimental setups for evaluation. The literature lacks a controlled assessment of the merits of different generalization schemes. Our aim is to catalyze community-wide progress on generalization in deep RL. To this end, we present a benchmark and experimental protocol, and conduct a systematic empirical study. Our framework contains a diverse set of environments, our methodology covers both in-distribution and out-of-distribution generalization, and our evaluation includes deep RL algorithms that specifically tackle generalization. Our key finding is that `vanilla' deep RL algorithms generalize better than specialized schemes that were proposed specifically to tackle generalization. **

** In the monitoring of a complex electric grid, it is of paramount importance to provide operators with early warnings of anomalies detected on the network, along with a precise classification and diagnosis of the specific fault type. In this paper, we propose a novel multi-stage early warning system prototype for electric grid fault detection, classification, subgroup discovery, and visualization. In the first stage, a computationally efficient anomaly detection method based on quartiles detects the presence of a fault in real time. In the second stage, the fault is classified into one of nine pre-defined disaster scenarios. The time series data are first mapped to highly discriminative features by applying dimensionality reduction based on temporal autocorrelation. The features are then mapped through one of three classification techniques: support vector machine, random forest, and artificial neural network. Finally in the third stage, intra-class clustering based on dynamic time warping is used to characterize the fault with further granularity. Results on the Bonneville Power Administration electric grid data show that i) the proposed anomaly detector is both fast and accurate; ii) dimensionality reduction leads to dramatic improvement in classification accuracy and speed; iii) the random forest method offers the most accurate, consistent, and robust fault classification; and iv) time series within a given class naturally separate into five distinct clusters which correspond closely to the geographical distribution of electric grid buses. **

** Bayesian Optimisation (BO), refers to a suite of techniques for global optimisation of expensive black box functions, which use introspective Bayesian models of the function to efficiently find the optimum. While BO has been applied successfully in many applications, modern optimisation tasks usher in new challenges where conventional methods fail spectacularly. In this work, we present Dragonfly, an open source Python library for scalable and robust BO. Dragonfly incorporates multiple recently developed methods that allow BO to be applied in challenging real world settings; these include better methods for handling higher dimensional domains, methods for handling multi-fidelity evaluations when cheap approximations of an expensive function are available, methods for optimising over structured combinatorial spaces, such as the space of neural network architectures, and methods for handling parallel evaluations. Additionally, we develop new methodological improvements in BO for selecting the Bayesian model, selecting the acquisition function, and optimising over complex domains with different variable types and additional constraints. We compare Dragonfly to a suite of other packages and algorithms for global optimisation and demonstrate that when the above methods are integrated, they enable significant improvements in the performance of BO. The Dragonfly library is available at dragonfly.github.io. **

** Age of Information (AoI) measures the freshness of the information at a remote location. AoI reflects the time that is elapsed since the generation of the packet by a transmitter. In this paper, we consider a remote monitoring problem (e.g., remote factory) in which a number of sensor nodes are transmitting time sensitive measurements to a remote monitoring site. We consider minimizing a metric that strikes a trade-off between minimizing the sum of the expected AoI of all sensors and minimizing an Ultra Reliable Low Latency Communication (URLLC) term. The URLLC term minimization is represented by ensuring that the probability the AoI of each sensor exceeds a predefined threshold should be at its minimum. Moreover, we assume that sensors require different threshold values and generate different packet sizes. Motivated by the success of machine learning in solving large networking problems at low complexity, we develop a low complexity reinforcement learning based algorithm to solve the proposed formulation. We trained our algorithm using the state-of-the-art actor-critic algorithm over a set of public bandwidth traces. Simulation results show that the proposed algorithm outperforms the considered baselines in terms of minimizing the expected AoI and the threshold violation of each sensor. **

** We generalize the log Gaussian Cox process (LGCP) framework to model multiple correlated point data jointly. The observations are treated as realizations of multiple LGCPs, whose log intensities are given by linear combinations of latent functions drawn from Gaussian process priors. The combination coefficients are also drawn from Gaussian processes and can incorporate additional dependencies. We derive closed-form expressions for the moments of the intensity functions and develop an efficient variational inference algorithm that is orders of magnitude faster than competing deterministic and stochastic approximations of multivariate LGCP, coregionalization models, and multi-task permanental processes. Our approach outperforms these benchmarks in multiple problems, offering the current state of the art in modeling multivariate point processes. **

** The area of building energy management has received a significant amount of interest in recent years. This area is concerned with combining advancements in sensor technologies, communications and advanced control algorithms to optimize energy utilization. Reinforcement learning is one of the most prominent machine learning algorithms used for control problems and has had many successful applications in the area of building energy management. This research gives a comprehensive review of the literature relating to the application of reinforcement learning to developing autonomous building energy management systems. The main direction for future research and challenges in reinforcement learning are also outlined. **

** This paper looks into the problem of detecting network anomalies by analyzing NetFlow records. While many previous works have used statistical models and machine learning techniques in a supervised way, such solutions have the limitations that they require large amount of labeled data for training and are unlikely to detect zero-day attacks. Existing anomaly detection solutions also do not provide an easy way to explain or identify attacks in the anomalous traffic. To address these limitations, we develop and present GEE, a framework for detecting and explaining anomalies in network traffic. GEE comprises of two components: (i) Variational Autoencoder (VAE) - an unsupervised deep-learning technique for detecting anomalies, and (ii) a gradient-based fingerprinting technique for explaining anomalies. Evaluation of GEE on the recent UGR dataset demonstrates that our approach is effective in detecting different anomalies as well as identifying fingerprints that are good representations of these various attacks. **

** Stochastic Gradient Descent (SGD) based training of neural networks with a large learning rate or a small batch-size typically ends in well-generalizing, flat regions of the weight space, as indicated by small eigenvalues of the Hessian of the training loss. However, the curvature along the SGD trajectory is poorly understood. An empirical investigation shows that initially SGD visits increasingly sharp regions, reaching a maximum sharpness determined by both the learning rate and the batch-size of SGD. When studying the SGD dynamics in relation to the sharpest directions in this initial phase, we find that the SGD step is large compared to the curvature and commonly fails to minimize the loss along the sharpest directions. Furthermore, using a reduced learning rate along these directions can improve training speed while leading to both sharper and better generalizing solutions compared to vanilla SGD. In summary, our analysis of the dynamics of SGD in the subspace of the sharpest directions shows that they influence the regions that SGD steers to (where larger learning rate or smaller batch size result in wider regions visited), the overall training speed, and the generalization ability of the final model. **

** This work studies the robustness certification problem of neural network models, which aims to find certified adversary-free regions as large as possible around data points. In contrast to the existing approaches that seek regions bounded uniformly along all input features, we consider non-uniform bounds and use it to study the decision boundary of neural network models. We formulate our target as an optimization problem with nonlinear constraints. Then, a framework applicable for general feedforward neural networks is proposed to bound the output logits so that the relaxed problem can be solved by the augmented Lagrangian method. Our experiments show the non-uniform bounds have larger volumes than uniform ones. Compared with normal models, the robust models have even larger non-uniform bounds and better interpretability. Further, the geometric similarity of the non-uniform bounds gives a quantitative, data-agnostic metric of input features' robustness. **

** Deep neural networks have revolutionized many fields such as computer vision and natural language processing. Inspired by this recent success, deep learning started to show promising results for Time Series Classification (TSC). However, neural networks are still behind the state-of-the-art TSC algorithms, that are currently composed of ensembles of 37 non deep learning based classifiers. We attribute this gap in performance due to the lack of neural network ensembles for TSC. Therefore in this paper, we show how an ensemble of 60 deep learning models can significantly improve upon the current state-of-the-art performance of neural networks for TSC, when evaluated over the UCR/UEA archive: the largest publicly available benchmark for time series analysis. Finally, we show how our proposed Neural Network Ensemble (NNE) is the first time series classifier to outperform COTE while reaching similar performance to the current state-of-the-art ensemble HIVE-COTE. **

** Multiagent reinforcement learning algorithms (MARL) have been demonstrated on complex tasks that require the coordination of a team of multiple agents to complete. Existing works have focused on sharing information between agents via centralized critics to stabilize learning or through communication to increase performance, but do not generally look at how information can be shared between agents to address the curse of dimensionality in MARL. We posit that a multiagent problem can be decomposed into a multi-task problem where each agent explores a subset of the state space instead of exploring the entire state space. This paper introduces a multiagent actor-critic algorithm and method for combining knowledge from homogeneous agents through distillation and value-matching that outperforms policy distillation alone and allows further learning in both discrete and continuous action spaces. **

** In this paper, we provide tight deviation bounds for M-estimators, which are valid with a prescribed probability for every sample size. M-estimators are ubiquitous in machine learning and statistical learning theory. They are used both for defining prediction strategies and for evaluating their precision. Our deviation bounds can be seen as a non-asymptotic version of the law of iterated logarithm. They are established under general assumptions such as Lipschitz continuity of the loss function and (local) curvature of the population risk. These conditions are satisfied for most examples used in machine learning, including those that are known to be robust to outliers and to heavy tailed distributions. To further highlight the scope of applicability of the obtained results, a new algorithm, with provably optimal theoretical guarantees, for the best arm identification in a stochastic multi-arm bandit setting is presented. Numerical experiments illustrating the validity of the algorithm are reported. **

** We propose a novel ranking model that combines the Bradley-Terry-Luce probability model with a nonnegative matrix factorization framework to model and uncover the presence of latent variables that influence the performance of top tennis players. We derive an efficient, provably convergent, and numerically stable majorization-minimization-based algorithm to maximize the likelihood of datasets under the proposed statistical model. The model is tested on datasets involving the outcomes of matches between 20 top male and female tennis players over 14 major tournaments for men (including the Grand Slams and the ATP Masters 1000) and 16 major tournaments for women over the past 10 years. Our model automatically infers that the surface of the court (e.g., clay or hard court) is a key determinant of the performances of male players, but less so for females. Top players on various surfaces over this longitudinal period are also identified in an objective manner. **

** The functional programming language Erlang is well-suited for concurrent and distributed applications. Numerical computing, however, is not seen as one of its strengths. The recent introduction of Federated Learning, a concept according to which client devices are leveraged for decentralized machine learning tasks, while a central server updates and distributes a global model, provided the motivation for exploring how well Erlang is suited to that problem. We present ffl-erl, a framework for Federated Learning, written in Erlang, and explore how well it performs in two scenarios: one in which the entire system has been written in Erlang, and another in which Erlang is relegated to coordinating client processes that rely on performing numerical computations in the programming language C. There is a concurrent as well as a distributed implementation of each case. Erlang incurs a performance penalty, but for certain use cases this may not be detrimental, considering the trade-off between conciseness of the language and speed of development (Erlang) versus performance (C). Thus, Erlang may be a viable alternative to C for some practical machine learning tasks. **

** A $k$-junta function is a function which depends on only $k$ coordinates of the input. For relatively small $k$ w.r.t. the input size $n$, learning $k$-junta functions is one of fundamental problems both theoretically and practically in machine learning. For the last two decades, much effort has been made to design efficient learning algorithms for Boolean junta functions, and some novel techniques have been developed. However, in real world, multi-labeled data seem to be obtained in much more often than binary-labeled one. Thus, it is a natural question whether these techniques can be applied to more general cases about the alphabet size. In this paper, we expand the Fourier detection techniques for the binary alphabet to any finite field $\mathbb{F}_q$, and give, roughly speaking, an $O(n^{0.8k})$-time learning algorithm for $k$-juntas over $\mathbb{F}_q$. Note that our algorithm is the first non-trivial (i.e., non-brute force) algorithm for such a class even in the case where $q=3$ and we give an affirmative answer to the question posed in [MOS04]. Our algorithm consists of two reductions: (1) from learning juntas to LDME which is a variant of the learning with errors (LWE) problems introduced by [Reg05], and (2) from LDME to the light bulb problem (LBP) introduced by [Val88]. Since the reduced problem (i.e., LBP) is a kind of binary problem regardless of the alphabet size of the original problem (i.e., learning juntas), we can directly apply the techniques for the binary case in the previous work such as in [Val15, KKK18]. **