深度学习模型可解释性的研究进展

2020 年 8 月 1 日 专知
深度学习模型可解释性的研究进展

深度学习在很多人工智能应用领域中取得成功的关键原因在于,通过复杂的深层网络模型从海量数据中学习丰富的知识。然而,深度学习模型内部高度的复杂性常导致人们难以理解模型的决策结果,造成深度学习模型的不可解释性,从而限制了模型的实际部署。因此,亟需提高深度学习模型的可解释性,使模型透明化,以推动人工智能领域研究的发展。本文旨在对深度学习模型可解释性的研究进展进行系统性的调研,从可解释性原理的角度对现有方法进行分类,并且结合可解释性方法在人工智能领域的实际应用,分析目前可解释性研究存在的问题,以及深度学习模型可解释性的发展趋势。为全面掌握模型可解释性的研究进展以及未来的研究方向提供新的思路。

http://jcs.iie.ac.cn/xxaqxb/ch/reader/view_abstract.aspx?file_no=20200302&flag=1


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“DLX” 可以获取《深度学习模型可解释性的研究进展》专知下载链接索引

专 · 知
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看5000+AI主题知识资料
登录查看更多
11

相关内容

广义上的可解释性指在我们需要了解或解决一件事情的时候,我们可以获得我们所需要的足够的可以理解的信息,也就是说一个人能够持续预测模型结果的程度。按照可解释性方法进行的过程进行划分的话,大概可以划分为三个大类: 在建模之前的可解释性方法,建立本身具备可解释性的模型,在建模之后使用可解释性方法对模型作出解释。
小贴士
相关VIP内容
专知会员服务
71+阅读 · 2020年8月27日
专知会员服务
43+阅读 · 2020年8月22日
专知会员服务
28+阅读 · 2020年8月9日
专知会员服务
42+阅读 · 2020年8月4日
专知会员服务
47+阅读 · 2020年6月26日
专知会员服务
68+阅读 · 2020年4月25日
相关论文
Kristijonas Cyras,Ramamurthy Badrinath,Swarup Kumar Mohalik,Anusha Mujumdar,Alexandros Nikou,Alessandro Previti,Vaishnavi Sundararajan,Aneta Vulgarakis Feljan
11+阅读 · 2020年9月1日
Kemal Oksuz,Baris Can Cam,Sinan Kalkan,Emre Akbas
19+阅读 · 2020年3月11日
TinyBERT: Distilling BERT for Natural Language Understanding
Xiaoqi Jiao,Yichun Yin,Lifeng Shang,Xin Jiang,Xiao Chen,Linlin Li,Fang Wang,Qun Liu
8+阅读 · 2019年9月23日
End-to-End Open-Domain Question Answering with BERTserini
Wei Yang,Yuqing Xie,Aileen Lin,Xingyu Li,Luchen Tan,Kun Xiong,Ming Li,Jimmy Lin
3+阅读 · 2019年9月18日
How to Fine-Tune BERT for Text Classification?
Chi Sun,Xipeng Qiu,Yige Xu,Xuanjing Huang
11+阅读 · 2019年5月14日
Silvio Olivastri,Gurkirt Singh,Fabio Cuzzolin
5+阅读 · 2019年4月4日
Chris Alberti,Kenton Lee,Michael Collins
6+阅读 · 2019年3月21日
Vikram Mullachery,Vishal Motwani
7+阅读 · 2018年5月13日
Zhang-Wei Hong,Chen Yu-Ming,Shih-Yang Su,Tzu-Yun Shann,Yi-Hsiang Chang,Hsuan-Kung Yang,Brian Hsi-Lin Ho,Chih-Chieh Tu,Yueh-Chuan Chang,Tsu-Ching Hsiao,Hsin-Wei Hsiao,Sih-Pin Lai,Chun-Yi Lee
4+阅读 · 2018年4月29日
Jeremy Howard,Sebastian Ruder
4+阅读 · 2018年1月18日
Top