LibRec 精选:从单词Embeddings生成单词

2018 年 10 月 11 日 LibRec智能推荐

LibRec 精选


推荐系统进展 第 15 期(更新至2018.10.10),更新 7 篇论文。


世界上唯一不用努力,就能得到的只有年龄!



1

社交更新


1

RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising,链接:https://github.com/criteo-research/reco-gym

2

Machine Learning with Kaggle Kernels – Part 1: https://blog.shahinrostami.com/2018/10/machine-learning-with-kaggle-kernels-part-1/













3

Generating Words from Embeddings,链接:https://rajatvd.github.io/Generating-Words-From-Embeddings/,源码:https://github.com/rajatvd/WordGenerator
















2

论文更新


1. Neural Educational Recommendation Engine (NERE)

Moin Nadeem, Dustin Stansbury, Shane Mooney

https://arxiv.org/abs/1809.08922v1

Neural Educational Recommendation Engine (NERE), to recommend educational content by leveraging student behaviors rather than ratings. NERE is based on a recurrent neural network that includes collaborative and content-based approaches for recommendation, and takes into account any particular student's speed, mastery, and experience to recommend the appropriate task. We conclude with a discussion on how NERE will be deployed, and position our work as one of the first educational recommender systems for the K-12 space.


2. Learning Recommender Systems from Multi-Behavior Data

Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-Seng Chua, Depeng jin

https://arxiv.org/abs/1809.08161v1

Most existing recommender systems leverage the data of one type of user behaviors only, such as the purchase behavior in E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. In this work, we contribute a novel solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender systems from multiple types of user behaviors. Extensive experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and multi-behavior data.


3. Adversarial Training Towards Robust Multimedia Recommender System

Jinhui Tang, Xiangnan He, Xiaoyu Du, Fajie Yuan, Qi Tian, Tat-Seng Chua

https://arxiv.org/abs/1809.07062v1

To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning.


4. NAIS: Neural Attentive Item Similarity Model for Recommendation

Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, Tat-Seng Chua

https://arxiv.org/abs/1809.07053v1

In recent years, several works attempt to learn item similarities from data, by expressing the similarity as an underlying model and estimating model parameters by optimizing a recommendation-aware objective function. In this work, we propose a neural network model named Neural Attentive Item Similarity model (NAIS) for item-based CF. Compared to the state-of-the-art item-based CF method Factored Item Similarity Model (FISM), our NAIS has stronger representation power with only a few additional parameters brought by the attention network.



5. Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System

Jiaxi Tang, Ke Wang

https://arxiv.org/abs/1809.07428v1

We propose a novel way to train ranking models, such as recommender systems, that are both effective and efficient. The student model achieves a similar ranking performance to that of the large teacher model, but its smaller model size makes the online inference more efficient. RD is flexible because it is orthogonal to the choices of ranking models for the teacher and student.


6. Detecting Changes in User Preferences using Hidden Markov Models for Sequential Recommendation Tasks

Farzad Eskandanian, Bamshad Mobasher

https://arxiv.org/abs/1810.00272v1

In many domains, however, the tastes and preferences of users change over time due to a variety of factors and recommender systems should capture these dynamics in user preferences in order to remain tuned to the most current interests of users. In this work we present a recommendation framework based on Hidden Markov Models (HMM) which takes into account the dynamics of user preferences. In the second approach the HMM is used directly to generate recommendations taking into account the identified change points.


7. Point-of-Interest Recommendation: Exploiting Self-Attentive Autoencoders with Neighbor-Aware Influence

Chen Ma, Yingxue Zhang, Qinglong Wang, Xue Liu

https://arxiv.org/abs/1809.10770v1

The rapid growth of Location-based Social Networks (LBSNs) provides a great opportunity to satisfy the strong demand for personalized Point-of-Interest (POI) recommendation services. To cope with these challenges, we propose a novel autoencoder-based model to learn the non-linear user-POI relations, namely \textit{SAE-NAD}, which consists of a self-attentive encoder (SAE) and a neighbor-aware decoder (NAD). In particular, unlike previous works equally treat users' checked-in POIs, our self-attentive encoder adaptively differentiates the user preference degrees in multiple aspects, by adopting a multi-dimensional attention mechanism.






登录查看更多
1

相关内容

Xiangnan He,中国科学技术大学信息科学技术学院教授,研究兴趣包括信息检索、数据挖掘和多媒体分析;担任过多个顶级会议(包括SIGIR、WWW、KDD、MM等)的(高级)PC成员,以及TKDE、TOIS、TMM等期刊的定期审稿人。
近期必读的5篇顶会WWW2020【推荐系统】相关论文-Part2
专知会员服务
68+阅读 · 2020年4月7日
近期必读的5篇 WSDM 2020【图神经网络(GNN)】相关论文
专知会员服务
56+阅读 · 2020年1月10日
【推荐系统/计算广告/机器学习/CTR预估资料汇总】
专知会员服务
86+阅读 · 2019年10月21日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
6+阅读 · 2018年3月28日
Arxiv
7+阅读 · 2018年1月31日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
LibRec智能推荐
30+阅读 · 2018年2月5日
LibRec 每周精选:10篇每个人都应该读的RecSys文章
LibRec智能推荐
5+阅读 · 2018年1月1日
Top
微信扫码咨询专知VIP会员