LibRec 精选:推荐系统的论文与源码

2018 年 11 月 29 日 LibRec智能推荐
LibRec 精选:推荐系统的论文与源码

LibRec 精选

LibRec智能推荐 第 19 期(至2018.11.29),更新 6 篇精彩讨论内容。



RecSys 2019 @ Copenhagen, Denmark, Sep. 16-20, 2019,链接: 




PhD positions available @ University of Glasgow【信息检索与推荐系统】,链接:


Mixed-initiative recommender systems【PPT】,链接: 

1. Recommending Users: Whom to Follow on Federated Social Networks

Jan Trienes, Andrés Torres Cano, Djoerd Hiemstra

Popular social networks such as Facebook and Twitter generate follow recommendations by listing profiles a user may be interested to connect with. Federated social networks aim to resolve issues associated with the popular social networks - such as large-scale user-surveillance and the miss-use of user data to manipulate elections - by decentralizing authority and promoting privacy. Due to their recent emergence, recommender systems do not exist for federated social networks, yet.

2. Attentive Neural Architecture Incorporating Song Features For Music Recommendation

Noveen Sachdeva, Kartik Gupta, Vikram Pudi

Often the aim of these systems is to increase the time, the user spends on the platform and hence having a high commercial value. Prediction of the next song the user might like requires some kind of modeling of the user interests at the given point of time. In this direction, we propose a novel attentive neural architecture which in addition to the sequence of items selected by the user, uses the features of these items to better learn the user short-term preferences and recommend the next song to the user.

3. Bias Disparity in Recommendation Systems

Virginia Tsintzou, Evaggelia Pitoura, Panayiotis Tsaparas

More importantly, there are cases where recommenders may amplify such biases, leading to the phenomenon of bias disparity. In this short paper, we present a preliminary experimental study on synthetic data, where we investigate different conditions under which a recommender exhibits bias disparity, and the long-term effect of recommendations on data bias. We also consider a simple re-ranking algorithm for reducing bias disparity, and present some observations for data disparity on real data.

4. GEMRank: Global Entity Embedding For Collaborative Filtering

Arash Khoeini, Bita Shams, Saman Haratizadeh

Unlike many other domains, this approach has not achieved a desired performance in collaborative filtering problems, probably due to unavailability of appropriate textual data. It uses the concept of profile co-occurrence for defining relations among entities and applies a factorization method for embedding the users and items. The results show that GEMRank significantly outperforms the baseline algorithms in a variety of data sets with different degrees of density.

5. Deep Item-based Collaborative Filtering for Top-N Recommendation

Feng Xue, Xiangnan He, Xiang Wang, Jiandong Xu, Kai Liu, Richang Hong

Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. We treat this solution as a deep variant of ICF, thus term it as DeepICF.

6. Fast Non-Bayesian Poisson Factorization for Implicit-Feedback Recommendations

David Cortes

This work explores non-negative matrix factorization based on regularized Poisson models for recommender systems with implicit-feedback data. The properties of Poisson likelihood allow a shortcut for very fast computation and optimization over elements with zero-value when the latent-factor matrices are non-negative, making it a more suitable approach than squared loss for very sparse inputs such as implicit-feedback data. A simple and embarrassingly parallel optimization approach based on proximal gradients is presented, which in large datasets converges 2-3 orders of magnitude faster than its Bayesian counterpart (Hierarchical Poisson Factorization) fit through variational inference techniques, and 1 order of magnitude faster than implicit-ALS fit with the Conjugate Gradient method.







LibRec 精选:你见过最有趣的论文标题是什么?
4+阅读 · 2019年11月6日
LibRec 精选:从0开始构建RNN网络
5+阅读 · 2019年5月31日
LibRec 精选:如何评估交互式推荐系统?
8+阅读 · 2019年5月5日
LibRec 精选:近期15篇推荐系统论文
5+阅读 · 2019年3月5日
LibRec 精选:推荐系统的常用数据集
12+阅读 · 2019年2月15日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
4+阅读 · 2019年1月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
34+阅读 · 2018年8月27日
LibRec 精选:推荐的可解释性[综述]
8+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
4+阅读 · 2018年3月7日
LibRec 每周精选:近期推荐系统论文及进展
30+阅读 · 2018年2月5日
34+阅读 · 2020年3月19日
48+阅读 · 2020年2月25日
51+阅读 · 2020年1月20日
64+阅读 · 2019年10月21日
49+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
31+阅读 · 2019年9月29日
Wenqi Fan,Yao Ma,Qing Li,Yuan He,Eric Zhao,Jiliang Tang,Dawei Yin
12+阅读 · 2019年11月23日
Fang Liu,Guoming Tang,Youhuizi Li,Zhiping Cai,Xingzhou Zhang,Tongqing Zhou
15+阅读 · 2019年11月7日
Explainable Recommendation: A Survey and New Perspectives
Yongfeng Zhang,Xu Chen
43+阅读 · 2019年8月15日
Maria-Florina Balcan,Yi Li,David P. Woodruff,Hongyang Zhang
3+阅读 · 2018年10月18日
Jianxun Lian,Xiaohuan Zhou,Fuzheng Zhang,Zhongxia Chen,Xing Xie,Guangzhong Sun
8+阅读 · 2018年5月30日
Han Zhu,Xiang Li,Pengye Zhang,Guozheng Li,Jie He,Han Li,Kun Gai
7+阅读 · 2018年5月21日
Sven Schmit,Carlos Riquelme
5+阅读 · 2018年3月28日
Xu Chen,Yongfeng Zhang,Hongteng Xu,Yixin Cao,Zheng Qin,Hongyuan Zha
7+阅读 · 2018年1月31日
Yixing Fan,Liang Pang,JianPeng Hou,Jiafeng Guo,Yanyan Lan,Xueqi Cheng
5+阅读 · 2017年7月23日