单像素成像
照片和视频通常是通过使用数字传感器捕获光子(光的组成部分)来制作的,即环境光会反射物体,镜头将它聚焦在由微小的光敏元件或像素组成的屏幕上。图像是由反射光产生的亮斑和暗斑形成的图案。
以最普通的数码相机为例,它由数百像素组成,这些像素通过检测光在每个空间点的强度和颜色来形成图像。
同时,可以通过在物体周围放置若干个摄像机,并从多个角度对物体进行拍摄,或者利用光子流扫描物体,并在三维中重建它来生成 3D 图像。但无论使用何种方式,图像都是通过收集场景的空间信息来构建的。
每个图案都会反射出物体的不同部分,因此像素测量的光强度会随图案的变化而变化。通过跟踪这些变化,研究人员可以重建物体的图像。
现如今,格拉斯哥大学的数据科学家 Alex Turpin 和物理学家 Daniele Faccio 及他们的同事,发明了一种方法来生成具有单个像素但是没有图案化闪光的 3D 图像。他们利用闪电般快速的单光子探测器,以均匀的闪光照亮了一个场景,并简单地测量了反射时间。
探测器的精度为四分之一纳秒,可以计算出到达的光子数量与时间的函数关系,研究人员仅凭这些信息即可重建场景图像
然后,借助复杂的神经网络算法将这些图转换为 3D 图像。研究人员对算法进行了训练,向它展示了团队在实验室中移动和携带物体的数千张常规照片,以及同时由单点检测器捕获的时间数据。同时,他们还使用了一个非飞行时间的摄影机来拍摄场景的真实 3D 图像。
最终,这种神经网络已经足够了解时间数据与照片的对应关系,从而仅凭时间数据就可以创建高度准确的图像。它与飞行时间相机相比,时间图像模糊且缺乏细节。然而,却清楚地揭示了人们的形态。
加州大学伯克利分校的计算机科学家兼电气工程师 Laura Waller 表示:“乍一看,这种模棱两可的方法似乎使问题无法解决。单像素成像,当我第一次听到这个概念时,我想,这应该行得通。但仔细一想,这应该不起作用。”
格拉斯哥大学计算科学学院数据科学研究员 Alex Turpin 博士说:“如果我们只考虑空间信息,而单点探测器没有空间信息,所以单像素成像是不可能的。然而,这样的探测器仍然可以提供有价值的时间信息。与传统图像制作不同的是,我们的方法能够完全将光与过程分离。”
而且为了能实现这一目的,Alex Turpin及其同事采用了一种称为神经网络的机器学习程序,在使用数据集训练神经网络后,该程序能够自行对场景中移动的人进行成像。
与传统的摄像机不同的是,收集时间数据的单点探测器体积小、重量轻且价格便宜,这意味着它们可以轻松地添加到现有系统中,例如被用作自动驾驶汽车的摄像头,以提高寻路的准确性和刹车反应速度。
另外,它们可以增强移动设备中现有的传感器,例如 Google Pixel 4,该传感器已经具有基于雷达技术的简单手势识别系统,甚至可以用下一代技术来监视医院患者胸腔的上升和下降,提醒着患者的呼吸变化或跟踪运动,从而用符合数据安全的方式了来确保他们的安全。
Alex Turpin 博士补充说:“我们对自己开发的系统的潜力感到非常兴奋,我们期待着继续挖掘其潜力。我们的下一步目标是开发一个独立的、便携式的即装即用系统,我们迫切希望开始研究我们的选择,并通过商业合作伙伴的帮助进一步开展研究。”
排版:赵辰霞
编审:王新凯
https://www.sciencemag.org/news/2020/08/time-camera-generates-3d-images-echoes-light
https://phys.org/news/2020-07-imaging-pictures.html
https://www.osapublishing.org/optica/abstract.cfm?uri=optica-7-8-900