深度学习中7种最优化算法的可视化与理解

2020 年 8 月 19 日 深度学习自然语言处理

关注“深度学习自然语言处理”,一起学习一起冲鸭!

设为星标,第一时间获取更多干货





来自:Python遇见机器学习
本文仅作学术分享,若侵权,请联 系后台删文处理

来自 https://zhuanlan.zhihu.com/p/41799394


本文旨在优化一维函数,实际上模型参数有数百万维以上,差距很大,因此本文最好作为辅助法的理解,而非对算法优劣的判断依据。
在深度学习中,有很多种优化算法,这些算法需要在极高维度(通常参数有数百万个以上)也即数百万维的空间进行梯度下降,从最开始的初始点开始,寻找最优化的参数,通常这一过程可能会遇到多种的情况,诸如:
1、提前遇到局部最小值从而卡住,再也找不到全局最小值了。
2、遇到极为平坦的地方:“平原”,在这里梯度极小,经过多次迭代也无法离开。同理,鞍点也是一样的,在鞍点处,各方向的梯度极小,尽管沿着某一个方向稍微走一下就能离开。
3、“悬崖”,某个方向上参数的梯度可能突然变得奇大无比,在这个地方,梯度可能会造成难以预估的后果,可能让已经收敛的参数突然跑到极远地方去。
为了可视化&更好的理解这些优化算法,我首先拼出了一个很变态的一维函数:


其导数具有很简单的形式:


具体长得像:


具有悬崖和大量的局部最小值,足以模拟较为复杂的优化情况了。




算法1:纯粹的梯度下降法





该算法很简单,表述如下:
   
   
     
首先给出学习率lr,初始x while True: x = x - lr*df/dx

根据学习率的不同,可以看到不同的效果。学习率过小,卡在局部极小值,学习率过大,压根不收敛。
梯度下降法





算法2:梯度下降法+动量





算法在纯粹的梯度下降法之上,外加了梯度,从而记录下了历史的梯度情况,从而减轻了卡在局部最小值的危险,在梯度=0的地方仍然会有一定的v剩余,从而在最小值附近摇摆。
   
   
     
首先给出学习率lr,动量参数m 初始速度v=0,初始x while True: v = m * v - lr * df/dx x += v

下面可以看图:
梯度下降+动量, lr=0.05
梯度下降+动量, lr=0.01
梯度下降+动量, lr=0.002

从中我们可以看出:
1、lr越小越稳定,太大了很难收敛到最小值上,但是太小的话收敛就太慢了。
2、动量参数不能太小,0.9以上表现比较好,但是又不能太大,太大了无法停留在最小值处。





算法3:AdaGrad算法





AdaGrad算法的思想是累计历史上出现过的梯度(平方),用积累的梯度平方的总和的平方根,去逐元素地缩小现在的梯度。某种意义上是在自行缩小学习率,学习率的缩小与过去出现过的梯度有关。
缺点是:刚开始参数的梯度一般很大,但是算法在一开始就强力地缩小了梯度的大小,也称学习率的过早过量减少。

算法描述:
   
   
     
给出学习率lr,delta=1e-7 累计梯度r=0,初始x while True: g = df/dx r = r + g*g x = x - lr / (delta+ sqrt(r)) * g

效果并不是很好......





算法4:RMSProp





AdaGrad算法在前期可能会有很大的梯度,自始至终都保留了下来,这会使得后期的学习率过小。RMSProp在这个基础之上,加入了平方梯度的衰减项,只能记录最近一段时间的梯度,在找到碗状区域时能够快速收敛。

算法描述:
   
   
     
给出学习率lr,delta=1e-6,衰减速率p 累计梯度r=0,初始x while True: g = df/dx r = p*r + (1-p)*g*g x = x - lr / (delta+ sqrt(r)) * g
RMSProp,p=0.99
RMSProp,p=0.9
RMSProp,p=0.8
衰减速率情况复杂,建议自行调参.......





算法5:Adam算法





Adam算法和之前类似,也是自适应减少学习率的算法,不同的是它更新了一阶矩和二阶矩,用一阶矩有点像有动量的梯度下降,而用二阶矩来降低学习率。
此外还使用了类似于s = s / (1-p1^t)这样的公式,这样的公式在t较为小的时候会成倍增加s,从而让梯度更大,参数跑的更快,迅速接近期望点。而后续t比较大的时候,s = s / (1-p1^t)基本等效于s=s,没什么用。

算法如下:
   
   
     
给出学习率lr,delta=1e-8,衰减速率p1=0.9,p2=0.999 累计梯度r=0,初始x ,一阶矩s=0,二阶矩r=0 时间t = 0 while True: t += 1 g = df/dx s = p1*s + (1-p1) *g r = p2*r +(1-p2)*g*g
s = s / (1-p1^t) r = r / (1-p2^t)
x = x - lr / (delta+ sqrt(r)) * s
Adam算法,鬼一样的表现
是的,你没有看错,这玩意压根不收敛......表现极差。
在算法中仔细研究后才发现,是在t很小的前几步的时候,p2=0.999太大了,导致r = r / (1-p2^t) 中,1-p2^t接近0,r迅速爆炸,百步之内到了inf。后来修改p2=0.9后效果就好得多了。
Adam算法,神级表现
最后还是Adam效果最好了 :),尽管学习率还是需要相当的调参。





算法6:牛顿法





牛顿法是二阶近似方法的一种,其原理类似于将某函数展开到二次方(二次型)项:


如果幸运的话,这个展开式是一个开口向上的曲面,一步就走到这个曲面的最低点:

   
   
     
初始x while True: g = df(x) # 一阶导数 gg = ddf(x) # 二阶导数 x = x - g/gg # 走到曲面的最低点

可怜的牛顿法,静态图
图片如上,看了真可怜........其实牛顿法要求的是H矩阵正定(一维情况下是二阶导数大于零),在多维中,这样的情况难以满足,大量出现的极小值,悬崖,鞍点都会造成影响,导致无法顺利进行下去,为了更好地进行牛顿法,我们需要正则化它。





算法7:牛顿法+正则化





牛顿法加上正则化可以避免卡在极小值处,其方法也很简单:更新公式改成如下即可。


一维的算法如下:
   
   
     
初始x ,正则化强度alpha while True: g = df(x) # 一阶导数 gg = ddf(x) # 二阶导数 x = x - g/(gg+alpha) # 走到曲面的最低点

效果图:
牛顿法+正则化
看了真可怜.........二次方法真心在非凸情况很糟糕。此外算法涉及H矩阵的逆,这需要O(n^3)的计算量,非深度学习可用。

   参考文献



[1]Ian Goodfellow,深度学习Deep Learning,人民邮电出版社,170-190

  代码



    
    
      
#coding:utf-8 from __future__ import print_function import numpy as np import matplotlib.pyplot as plt
def f(x): return (0.15*x)**2 + np.cos(x) + np.sin(3*x)/3 + np.cos(5*x)/5 + np.sin(7*x)/7
def df(x): return (9/200)*x - np.sin(x) -np.sin(5*x) + np.cos(3*x) + np.cos(7*x)
points_x = np.linspace(-20, 20, 1000) points_y = f(points_x)

# 纯粹的梯度下降法,GD for i in range(10): # 绘制原来的函数 plt.plot(points_x, points_y, c="b", alpha=0.5, linestyle="-") # 算法开始 lr = pow(2,-i)*16 x = -20.0 GD_x, GD_y = [], [] for it in range(1000): GD_x.append(x), GD_y.append(f(x)) dx = df(x) x = x - lr * dx
plt.xlim(-20, 20) plt.ylim(-2, 10) plt.plot(GD_x, GD_y, c="r", linestyle="-") plt.title("Gradient descent,lr=%f"%(lr)) plt.savefig("Gradient descent,lr=%f"%(lr) + ".png") plt.clf()

# 动量 + 梯度下降法 for i in range(10): # 绘制原来的函数 plt.plot(points_x, points_y, c="b", alpha=0.5, linestyle="-") # 算法开始 lr = 0.002 m = 1 - pow(0.5,i) x = -20 v = 1.0 GDM_x, GDM_y = [], [] for it in range(1000): GDM_x.append(x), GDM_y.append(f(x)) v = m * v - lr * df(x) x = x + v
plt.xlim(-20, 20) plt.ylim(-2, 10) plt.plot(GDM_x, GDM_y, c="r", linestyle="-") plt.scatter(GDM_x[-1],GDM_y[-1],90,marker = "x",color="g") plt.title("Gradient descent + momentum,lr=%f,m=%f"%(lr,m)) plt.savefig("Gradient descent + momentum,lr=%f,m=%f"%(lr,m) + ".png") plt.clf()

# AdaGrad for i in range(15): # 绘制原来的函数 plt.plot(points_x, points_y, c="b", alpha=0.5, linestyle="-") # 算法开始 lr = pow(1.5,-i)*32 delta = 1e-7 x = -20 r = 0 AdaGrad_x, AdaGrad_y = [], [] for it in range(1000): AdaGrad_x.append(x), AdaGrad_y.append(f(x)) g = df(x) r = r + g*g # 积累平方梯度 x = x - lr /(delta + np.sqrt(r)) * g
plt.xlim(-20, 20) plt.ylim(-2, 10) plt.plot(AdaGrad_x, AdaGrad_y, c="r", linestyle="-") plt.scatter(AdaGrad_x[-1],AdaGrad_y[-1],90,marker = "x",color="g") plt.title("AdaGrad,lr=%f"%(lr)) plt.savefig("AdaGrad,lr=%f"%(lr) + ".png") plt.clf()

# RMSProp for i in range(15): # 绘制原来的函数 plt.plot(points_x, points_y, c="b", alpha=0.5, linestyle="-") # 算法开始 lr = pow(1.5,-i)*32 delta = 1e-6 rou = 0.8 x = -20 r = 0 RMSProp_x, RMSProp_y = [], [] for it in range(1000): RMSProp_x.append(x), RMSProp_y.append(f(x)) g = df(x) r = rou * r + (1-rou)*g*g # 积累平方梯度 x = x - lr /(delta + np.sqrt(r)) * g
plt.xlim(-20, 20) plt.ylim(-2, 10) plt.plot(RMSProp_x, RMSProp_y, c="r", linestyle="-") plt.scatter(RMSProp_x[-1],RMSProp_y[-1],90,marker = "x",color="g") plt.title("RMSProp,lr=%f,rou=%f"%(lr,rou)) plt.savefig("RMSProp,lr=%f,rou=%f"%(lr,rou) + ".png") plt.clf()
# Adam for i in range(48): # 绘制原来的函数 plt.plot(points_x, points_y, c="b", alpha=0.5, linestyle="-") # 算法开始 lr = pow(1.2,-i)*2 rou1,rou2 = 0.9,0.9 # 原来的算法中rou2=0.999,但是效果很差 delta = 1e-8 x = -20 s,r = 0,0 t = 0 Adam_x, Adam_y = [], [] for it in range(1000): Adam_x.append(x), Adam_y.append(f(x)) t += 1 g = df(x) s = rou1 * s + (1 - rou1)*g r = rou2 * r + (1 - rou2)*g*g # 积累平方梯度 s = s/(1-pow(rou1,t)) r = r/(1-pow(rou2,t)) x = x - lr /(delta + np.sqrt(r)) * s
plt.xlim(-20, 20) plt.ylim(-2, 10) plt.plot(Adam_x, Adam_y, c="r", linestyle="-") plt.scatter(Adam_x[-1],Adam_y[-1],90,marker = "x",color="g") plt.title("Adam,lr=%f"%(lr)) plt.savefig("Adam,lr=%f"%(lr) + ".png") plt.clf()
# 牛顿法 for i in range(72): # 绘制原来的函数 plt.plot(points_x, points_y, c="b", alpha=0.5, linestyle="-") # 算法开始 alpha= pow(1.2,-i)*20 x = -20.0 Newton_x, Newton_y = [], [] for it in range(1000): Newton_x.append(x), Newton_y.append(f(x)) g = df(x) gg = ddf(x) x = x - g/(gg+alpha)
plt.xlim(-20, 20) plt.ylim(-2, 10) plt.plot(Newton_x, Newton_y, c="r", linestyle="-") plt.scatter(Newton_x[-1],Newton_y[-1],90,marker = "x",color="g") plt.title("Newton,alpha=%f"%(alpha)) plt.savefig("Newton,alpha=%f"%(alpha) + ".png") plt.clf()
  
  
    







说个正事哈



由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:

(1)点击页面最上方深度学习自然语言处理”,进入公众号主页。

(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。

感谢支持,比心



投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等

记得备注呦


推荐两个专辑给大家:
专辑 | 李宏毅人类语言处理2020笔记
专辑 | NLP论文解读


登录查看更多
1

相关内容

梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
24+阅读 · 2020年9月18日
专知会员服务
199+阅读 · 2020年9月1日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
44+阅读 · 2020年5月23日
麻省理工学院MIT-ICLR2020《神经网络能推断出什么?》
专知会员服务
50+阅读 · 2020年2月19日
【斯坦福&Google】面向机器人的机器学习,63页PPT
专知会员服务
23+阅读 · 2019年11月19日
深度学习优化算法总结(SGD,AdaGrad,Adam等)
极市平台
33+阅读 · 2019年4月30日
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
干货 | 深入理解深度学习中的激活函数
计算机视觉life
16+阅读 · 2019年1月29日
可视化理解四元数,愿你不再掉头发
计算机视觉life
30+阅读 · 2019年1月2日
深度学习面试100题(第41-45题)
七月在线实验室
15+阅读 · 2018年7月18日
深度学习超参数简单理解
计算机视觉战队
4+阅读 · 2017年11月28日
BAT机器学习面试1000题系列(第51~55题)
七月在线实验室
10+阅读 · 2017年10月8日
Self-Attention Graph Pooling
Arxiv
5+阅读 · 2019年4月17日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关资讯
深度学习优化算法总结(SGD,AdaGrad,Adam等)
极市平台
33+阅读 · 2019年4月30日
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
干货 | 深入理解深度学习中的激活函数
计算机视觉life
16+阅读 · 2019年1月29日
可视化理解四元数,愿你不再掉头发
计算机视觉life
30+阅读 · 2019年1月2日
深度学习面试100题(第41-45题)
七月在线实验室
15+阅读 · 2018年7月18日
深度学习超参数简单理解
计算机视觉战队
4+阅读 · 2017年11月28日
BAT机器学习面试1000题系列(第51~55题)
七月在线实验室
10+阅读 · 2017年10月8日
Top
微信扫码咨询专知VIP会员