项目名称: 高动载、大传动比风电增速箱能量空间分布特性及其对疲劳裂纹扩展的影响规律

项目编号: No.51475263

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 机械、仪表工业

项目作者: 向东

作者单位: 清华大学

项目金额: 85万元

中文摘要: 大型化和长寿命是全球风电装备制造的发展趋势,也是行业共同面临的技术挑战。增速箱是引起风电装备停机时间最长、损失最大的关键部件之一。本项目以风电装备增速箱为研究对象,结合其高动载的工况和大传动比增速传动的结构特征,研究非平稳多源载荷下增速箱的动力学行为,重点研究增速齿轮箱内部激励、外部激励等多变量协同作用下的拍击振动形成机制及其对疲劳裂纹扩展的影响规律;在增速箱宏观动力学响应研究基础上,研究增速箱能量传递规律、损耗机理,确定能量空间分布特性,探索增速箱齿轮、轴承等关键零件上能量分布与关键结构损伤之间的影响关系,形成增速箱关键零件典型表面疲劳裂纹的扩展机制,提出高动载、大传动比增速箱优化设计方法,为我国大功率风电装备的设计开发提供理论支撑。

中文关键词: 风电增速箱;拍击;能量分布;优化设计;裂纹扩展

英文摘要: Large-scale and long-life are the development trends of global wind turbine equipment and common technical challenges in this industry. Gearbox is one of the key components which causes longest downtime and greatest loss of wind turbine. Taking wind turbine gearbox as the studying object, the dynamic behavior of gearbox is researched under non-stationary and multi-source loading condition, combining with the structure characteristic of large transmission ratio. The study on rattling vibration formation mechanism under multivariate synergy such as internal incentive and external incentive and its influence on fatigue crack growth mechanism is an emphasis. Then, energy transfer law and energy loss mechanism are explored based on the study of macroscopic dynamic response. Next, energy space distribution characteristic is analyzed to explore its influence on key structural damage. Finally, fatigue crack growth mechanism of typical surface is revealed, and optimization design method of gearbox with the characteristic of high dynamic load and large transmission ratio is put forward. The research will provide theoretical support for the design development of high-power wind turbine equipment.

英文关键词: Wind Turbine Gearbox;Rattling;Energy Distribution;Optimization Design;Crack Growth

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
15+阅读 · 2022年4月25日
工业设备数字孪生白皮书 附下载
专知会员服务
119+阅读 · 2022年4月6日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
251+阅读 · 2021年12月8日
专知会员服务
43+阅读 · 2021年10月6日
专知会员服务
31+阅读 · 2021年5月7日
工业人工智能的关键技术及其在预测性维护中的应用现状
对于这类型的iPhone 苹果不再提供维修服务
威锋网
0+阅读 · 2022年3月30日
重磅!数字孪生技术应用白皮书(2021)
专知
13+阅读 · 2021年12月8日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
【数字孪生】九论数字孪生
产业智能官
57+阅读 · 2019年7月6日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
时间序列深度学习:状态 LSTM 模型预测太阳黑子(上)
R语言中文社区
19+阅读 · 2018年6月15日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月21日
One-Class Model for Fabric Defect Detection
Arxiv
0+阅读 · 2022年4月20日
AutoML: A Survey of the State-of-the-Art
Arxiv
67+阅读 · 2019年8月14日
Arxiv
17+阅读 · 2019年3月28日
小贴士
相关主题
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
15+阅读 · 2022年4月25日
工业设备数字孪生白皮书 附下载
专知会员服务
119+阅读 · 2022年4月6日
重磅!数字孪生技术应用白皮书(2021)
专知会员服务
251+阅读 · 2021年12月8日
专知会员服务
43+阅读 · 2021年10月6日
专知会员服务
31+阅读 · 2021年5月7日
工业人工智能的关键技术及其在预测性维护中的应用现状
相关资讯
对于这类型的iPhone 苹果不再提供维修服务
威锋网
0+阅读 · 2022年3月30日
重磅!数字孪生技术应用白皮书(2021)
专知
13+阅读 · 2021年12月8日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【数字孪生】使用数字孪生体进行预测性维护
产业智能官
27+阅读 · 2019年7月22日
【数字孪生】九论数字孪生
产业智能官
57+阅读 · 2019年7月6日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
时间序列深度学习:状态 LSTM 模型预测太阳黑子(上)
R语言中文社区
19+阅读 · 2018年6月15日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员