项目名称: 铜绿假单胞菌氧化应激转录因子OxyR结构与功能的研究

项目编号: No.31300066

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 未庆

作者单位: 中国科学院微生物研究所

项目金额: 23万元

中文摘要: 研究微生物抗氧化胁迫响应机制可以提供防治病原微生物的方法。细菌中氧化应激反应的调控主要由转录因子OxyR负责。该因子通过感受外界活性氧水平而被活化,之后迅速发生结构上的变化而具有DNA结合能力,最后通过激活与抗氧化胁迫相关基因的转录来应对氧化胁迫。申请者近期发现铜绿假单胞菌中OxyR能够在其基因组上结合至少122个位点。该结果不仅验证了之前鉴定的抗氧化胁迫相关基因,还鉴定出许多参与其他代谢途径的基因,如小分子非编码RNA(snRNA)。本项目拟在此基础上,以人体机会致病菌铜绿假单胞菌为研究对象,运用基因突变与RNA-seq技术,阐明OxyR调控的snRNA的生物学功能与snRNA的作用机制;运用生物化学与结构生物学技术,解析全长OxyR与DNA复合体的结构。项目的完成将加深人们对OxyR的生物学功能及细菌感受氧化胁迫结构机制的理解,同时为人们利用OxyR作为药物靶标防治细菌感染奠定了基础。

中文关键词: 铜绿假单胞菌;氧化胁迫;功能与结构;;

英文摘要: The capability of organisms to alter their gene expression patterns in response to environmental changes is essential for their viability. Oxidative stress derived from reactive oxygen species (ROS) produced via normal aerobic metabolism or by antibiotics, or by stimulated human phagocytic cells during infections is one of the major challenges for those living organisms. Many bacteria coordinate the response to oxidative stress through the LysR-type transcriptional regulator (LTTR) OxyR. Upon activation by elevated levels of ROS, OxyR rapidly changes its conformation and activates a large array of genes to defense against oxidative stress. Recently, using chromatin immunoprecipitation in combination with whole genome tiling array analyses (ChIP-chip), we identified 122 novel OxyR target genes, including all the previously identified defensive genes (ahpCF, ahpB, katA, and katB) and other genes involved in regulation of iron homeostasis (pvdS), quorum-sensing (rsaL), biofilm development (bdlA), and small non-coding RNAs (snRNAs). In order to better understand the molecular mechanisms underlying oxidative stress mediated by OxyR and expand our horizon on the structural basis of this important phenomenon, in this project, by using the human opportunistic pathogen Pseudomonas aeruginosa, we will: (1) unravel the fu

英文关键词: Pseudomonas aeruginosa;oxidative stress;function and structure;;

成为VIP会员查看完整内容
0

相关内容

英国国防部《人类增强——新范式的黎明》,110页pdf
专知会员服务
33+阅读 · 2022年4月16日
《深度学习中神经注意力模型》综述论文
专知会员服务
114+阅读 · 2021年12月15日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
135+阅读 · 2021年9月20日
专知会员服务
9+阅读 · 2021年6月19日
最新「图机器学习药物发现」综述论文,22页pdf245篇文献
专知会员服务
100+阅读 · 2021年5月24日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
42+阅读 · 2020年10月4日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
人工智能预测RNA和DNA结合位点,以加速药物发现
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
25+阅读 · 2022年1月3日
Arxiv
15+阅读 · 2021年2月19日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
小贴士
相关主题
相关VIP内容
英国国防部《人类增强——新范式的黎明》,110页pdf
专知会员服务
33+阅读 · 2022年4月16日
《深度学习中神经注意力模型》综述论文
专知会员服务
114+阅读 · 2021年12月15日
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
135+阅读 · 2021年9月20日
专知会员服务
9+阅读 · 2021年6月19日
最新「图机器学习药物发现」综述论文,22页pdf245篇文献
专知会员服务
100+阅读 · 2021年5月24日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
42+阅读 · 2020年10月4日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员