项目名称: 双金属纳米颗粒在氢能源领域应用的多尺度设计

项目编号: No.21503014

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 郭伟

作者单位: 北京理工大学

项目金额: 22万元

中文摘要: 随着能源的相对短缺、环境污染和全球气候变暖等问题的日益加重,寻找替代化石能源的可再生能源变得尤为关键和紧迫。氢气是一种清洁、可再生的能量载体,通过内燃机或者燃料电池释放能量,具有效率高、产物清洁的优点。以氨气作为储氢的载体,可以通过原位的氨分解释放氢气,解决了氢气难以储存和运输的难题,目前技术上面临的主要挑战在于开发出低温下氨分解的廉价和高效的催化剂。本项目拟通过第一性原理计算结合动力学蒙特卡洛的多尺度模拟方法,从氨在双金属纳米颗粒表面分解的基元反应出发,寻找和设计更高效和廉价的氨分解材料。本项目的研究,对提高可再生的清洁能源在国民经济中能源消耗的比重,实现节能减排具有重要现实意义。

中文关键词: 纳米颗粒;氨分解;双金属催化剂;多尺度模拟

英文摘要: Finding renewable clean energy to replace fossil fuel is becoming extremely important as the energy shortage, pollution and global warming problems become severe. When release energy through internal combustion engine or fuel cell, hydrogen, as a clean and renewable energy carrier, has many advantages such as high efficiency and zero pollution. Ammonia can serve as a hydrogen carrier; it solves the difficulties in hydrogen storage and transportation by releasing on-site hydrogen gas. However, the challenge is to develop highly active and low-cost catalysts for ammonia decomposition at low temperature. In this project, by combining first-principles calculations and kinetic Monte Carlo technique, we plan to perform multi-scale simulations of ammonia decomposition on bimetallic nanoparticles. We will start from the decomposition elementary steps to find and design optimal catalytic materials. The project shall help to increase the portion of clean and renewable energy consumption, and thus contribute to an efficient and low-emission economy.

英文关键词: nanoparticles;ammonia decomposition;bimetallic catalyst;multiscale simulation

成为VIP会员查看完整内容
0

相关内容

中国能源体系 碳中和路线图,254页pdf
专知会员服务
73+阅读 · 2022年3月23日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《利用人工智能加速能源转型》报告
专知会员服务
73+阅读 · 2022年2月23日
腾讯:2022年十大数字科技应用趋势
专知会员服务
80+阅读 · 2022年1月13日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
43+阅读 · 2021年5月19日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
99+阅读 · 2020年3月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
小贴士
相关VIP内容
中国能源体系 碳中和路线图,254页pdf
专知会员服务
73+阅读 · 2022年3月23日
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《利用人工智能加速能源转型》报告
专知会员服务
73+阅读 · 2022年2月23日
腾讯:2022年十大数字科技应用趋势
专知会员服务
80+阅读 · 2022年1月13日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
43+阅读 · 2021年5月19日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员