项目名称: 托卡马克等离子体边缘动力学气球模大规模数值模拟研究

项目编号: No.11275162

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 孙国亚

作者单位: 厦门大学

项目金额: 80万元

中文摘要: 边缘台阶区和边缘局域模物理是目前托卡马克磁约束聚变等离子体研究的重要内容。压强梯度驱动的理想气球模、动力学气球模被认为是托卡马克等离子体边缘局域模以及边缘输运的主要物理机制之一。它们的线性稳定性是制约高约束模运行托卡马克等离子体边缘台阶区宽度和高度的重要因素。 非线性动力学效应,包括离子抗磁效应、波-粒子相互作用、有限拉莫半径效应等,对动力学气球模不稳定性及其相关输运行为是非常重要的,但未被充分研究。目前,大多数数值模拟研究运用流体方案而忽略动力学效应,第一性原理动力学数值模拟方案对边缘台阶区和边缘局域模非线性动力学过程的研究尚不多见。 本项目中,我们运用第一性原理三维环形回旋动力学聚变模拟程序(Global Gyrokinetic Toroidal Code,GTC),[1]从时域空域多尺度、高分辨率的角度,集中研究由压强梯度驱动的理想气球模和动力学气球模的线性和非线性动力学特性。

中文关键词: 托卡马克等离子体;大规模数值模拟;边缘局域模;动力学气球模;GTC

英文摘要: Physics of the edge pedestal and edge localized modes is currently one of the most important areas in magnetic confined fusion plasmas, and is long believed to be closely related to the overall performance of a tokamak. The edge localized ideal and kinetic ballooning mode, and kinetic peeling-ballooning mode are considered to be the the main physical mechanism of the edge transport of takamak, and their linear stability property is one of the important factors that define the height and width of the edge pedestal of a tokamak in High-mode operation regime. Nonlinear dynamic effects, including the ion diamagnetic effects, wave-particle interactions, and finite Larmor radius effects are very important to the instability properities of the kinetic ballooning mode and the related edge transports. Such effects has not been fully studied till now. At present, most of the numerical simulations using fluid schemes and ignore the dynamic kinetic effect, while the first principle kinetic simulations focusing on nonlinear dynamic processes of the edge pedstal and edge localized mode is rare. In this project, we use the state-of-the-art, first principle global Gyrokinetic Toroidal Code (GTC), [1]to simulate the complex edge physics with multiple temporal and spatial scales. We will focus on the linear and nonlinear dynam

英文关键词: tokamak plasma;Large scale numerical simulation;edge localized modes;kinetic ballooning mode;GTC

成为VIP会员查看完整内容
0

相关内容

【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
76+阅读 · 2022年1月7日
元宇宙专题深度,63页ppt
专知会员服务
216+阅读 · 2021年11月22日
专知会员服务
68+阅读 · 2021年10月17日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
21+阅读 · 2021年6月26日
《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
借助新的物理模拟引擎加速强化学习
TensorFlow
1+阅读 · 2021年8月16日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
13+阅读 · 2018年4月18日
小贴士
相关VIP内容
【中科大】数值计算方法扩充课程,116页pdf
专知会员服务
76+阅读 · 2022年1月7日
元宇宙专题深度,63页ppt
专知会员服务
216+阅读 · 2021年11月22日
专知会员服务
68+阅读 · 2021年10月17日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
21+阅读 · 2021年6月26日
《常微分方程》笔记,419页pdf
专知会员服务
70+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员