项目名称: 基于等离子体共振双体结构的人工光合作用CO2资源化利用

项目编号: No.21507011

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 化学工业

项目作者: 张立武

作者单位: 复旦大学

项目金额: 20万元

中文摘要: 针对光生电荷的体相复合及人工光合作用效率低等关键科学问题,基于我们前期研究的新发现:采用等离子体共振双体结构的人工光合作用光电极,共振双体中的耦合效应带来的特殊近场增强效应可以产生独特的光吸收及光生电荷传输特性等现象,深入开展等离子体共振双体结构提高人工光合作用效率的机理研究。揭示CO2在等离子体共振双体结构光电极上的化学反应动力学行为。通过超快光谱及光电化学研究,揭示等离子体共振双体结构对光生电荷的产生、分离、迁移及界面转移的影响规律。并采用基于时域有限差分方法,揭示等离子体共振双体结构中的耦合效应带来的独特电磁场分布情况对光生电荷的产生、分离及迁移过程的影响机理。通过等离子体共振双体结构,获得具有高效率和高选择性的人工光合作用体系。该研究对人工光合作用CO2资源化利用机理的深入理解,特别是如何有效降低光生电荷的体相复合及对新型人工光合作用体系的设计都具有重要意义。

中文关键词: 光电催化;CO2资源化利用;人工光合作用;表面等离子体;等离子体双体

英文摘要: The main challenges in the artificial photosynthesis are the high charge carrier recombination rate in the bulk and the low efficiency of this process. To address these issues, we propose that using photoelectrodes based on plasmonic dimers can improve the charge carrier separation and significantly enhance the efficiency of artificial photosynthesis. Due to the strong localisation of the optical field near plasmonic nanoparticles, the light intensity is channelled to the surface layers of the photoelectrode. Plasmonic dimer in the nanoparticle-on-mirror (NPoM) geometry exhibit extremely localised electrical fields across the material inside the nanogap. While the plasmonic enhancement of individual nanoparticles for artificial photosynthesis has been widely studied, no reports have focused on the greatly-improved photosynthesis available from plasmonic dimers. In this project, we will investigate the kinetics of charge carrier generation, recombination and transfer in the photoelectrodes based on plasmonic dimer. Finite difference time domain (FDTD) method will be employed to simulate the electric field distribution in the plasmonic dimer photoelectrode. The mechanism of the enhanced efficiency in this plasmonic dimer photoelectrode will be studied in detail. This project can provide not only a better understanding of the mechanism of the artificial photosynthesis process, but also a promising route for designing efficient artificial photosynthesis systems via confining and manipulating light absorption.

英文关键词: photoelectrochemical;CO2 utilization;artificial photosynthesis;surface plasmon;plasmonic dimer

成为VIP会员查看完整内容
0

相关内容

【NeurIPS2021】未见深度架构参数预测
专知会员服务
9+阅读 · 2021年10月27日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
37+阅读 · 2021年8月20日
专知会员服务
34+阅读 · 2021年8月19日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
21+阅读 · 2021年6月26日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
Dynamics 365热招 | Biz Apps Team为你注入夏日能量
微软招聘
6+阅读 · 2021年6月11日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Dialog Inpainting: Turning Documents into Dialogs
Arxiv
0+阅读 · 2022年5月18日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月16日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
小贴士
相关VIP内容
【NeurIPS2021】未见深度架构参数预测
专知会员服务
9+阅读 · 2021年10月27日
专知会员服务
13+阅读 · 2021年8月29日
专知会员服务
37+阅读 · 2021年8月20日
专知会员服务
34+阅读 · 2021年8月19日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
21+阅读 · 2021年6月26日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Dialog Inpainting: Turning Documents into Dialogs
Arxiv
0+阅读 · 2022年5月18日
Arxiv
0+阅读 · 2022年5月16日
Arxiv
0+阅读 · 2022年5月16日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
微信扫码咨询专知VIP会员