项目名称: 基于等离子体合成射流激励的高超声速飞行器控制机理及控制方法研究

项目编号: No.61503302

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 自动化技术、计算机技术

项目作者: 陈康

作者单位: 西北工业大学

项目金额: 19万元

中文摘要: 长航时、大机动飞行是高超声速飞行器未来的发展趋势,但目前仅依靠舵面的飞控系统无法解决大包络飞行所引起的控制能力不足问题。而等离子体合成射流激励作为一种新型的主动流场控制方式,通过改变飞行器的流场特性,能够提供额外的控制力和力矩,已应用于低速/亚音速飞行器飞行控制,但在高超声速飞行器飞行控制方面的研究尚未开展。本项目从高超声速飞行器控制系统设计的角度出发,通过激励器建模、高超声速流场作用机制分析、飞行器控制特性优化和飞行控制律设计,解决高超声速飞行器大包络机动飞行控制问题。重点研究等离子合成射流激励对高超声速飞行器气动特性的影响机制和基于等离子合成射流激励的高超声速飞行器大包络强鲁棒控制器设计,实现高超声速飞行器飞行能力的提升,从而推动我国高超声速飞行器控制理论的发展和控制技术的进步,具有重要的理论意义与应用价值。

中文关键词: 高超声速飞行器;等离子体流动控制;飞行控制;预测控制

英文摘要: Long endurance and high maneuver are surly the tendency in the future of the hypersonic vehicle technology development. But the present flight control system based on the aerodynamic rudders cannot solve the problem in the application of an extending envelope flight mission for the lack of the control ability. The plasma synthetic jet actuator is a novel active flow field control method that can provide extra operating forces and moments by changing the flow field characteristics around the vehicle. But the plasma synthetic jet actuator has not been applied in the hypersonic vehicles flight control while only been implemented in some low speed and subsonic aerial vehicles. The object of this project is to investigate the wide envelope flight control based on the plasma synthetic jet actuator by building the plasma synthetic jet actuator modeling, hypersonic flow field mechanism analyzing, performance optimization and control law deriving. The effort mainly focused on the following two points: 1) Influencing mechanism of the plasma synthetic jet actuator on the hypersonic vehicle aerodynamic characteristics; 2) Wide envelope robust flight control law design for the plasma synthetic jet actuated hypersonic vehicle. It is the goal to achieve a promotion for the hypersonic vehicle flying ability, and to advance the domestic development of the hypersonic control theory and control technology, which is of significant theoretical meaning and great practical value.

英文关键词: hypersonic vehicle;plasma flow control;flight control;predictive control

成为VIP会员查看完整内容
1

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
编码计算研究综述
专知会员服务
21+阅读 · 2021年10月26日
专知会员服务
29+阅读 · 2021年9月14日
专知会员服务
93+阅读 · 2021年6月23日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
127+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2020年11月26日
专知会员服务
66+阅读 · 2020年10月2日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
Word2Vec与Glove:词嵌入方法的动机和直觉
论智
14+阅读 · 2018年6月23日
【无人机】无人机的自主与智能控制
产业智能官
42+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
13+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2022年3月28日
Arxiv
12+阅读 · 2021年10月22日
Arxiv
16+阅读 · 2020年5月20日
小贴士
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
编码计算研究综述
专知会员服务
21+阅读 · 2021年10月26日
专知会员服务
29+阅读 · 2021年9月14日
专知会员服务
93+阅读 · 2021年6月23日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
127+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2020年11月26日
专知会员服务
66+阅读 · 2020年10月2日
相关资讯
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
Word2Vec与Glove:词嵌入方法的动机和直觉
论智
14+阅读 · 2018年6月23日
【无人机】无人机的自主与智能控制
产业智能官
42+阅读 · 2017年11月27日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
13+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
相关论文
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
27+阅读 · 2022年3月28日
Arxiv
12+阅读 · 2021年10月22日
Arxiv
16+阅读 · 2020年5月20日
微信扫码咨询专知VIP会员