项目名称: 几类映射的不变曲线问题的研究

项目编号: No.11501069

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 赵侯宇

作者单位: 重庆师范大学

项目金额: 18万元

中文摘要: 本项目利用动力系统中的小除数理论及线性化思想,对几类映射的不变曲线问题进行探讨,主要通过映射的等价方程进行讨论。针对等价方程,主要考虑:(1) 幂级数形式解的存在性,特别是形式解与已知函数所属函数类是否相同的情况;(2)形式解的收敛性,对于收敛条件来说,考虑改进Diophantine或Brjuno条件,或找到更弱的条件,并寻求最大收敛区间;(3)找到几类方程的数值解、近似解及某些解析特解。希望本课题的研究能丰富和发展平面映射的不变曲线理论,并对相关科学技术领域的发展起到促进作用。

中文关键词: 不变曲线;解析解;小除数

英文摘要: In this project, we will discuss the invariant curves for several mappings by small divisor theory and linearization in dynamical system. These can be done through equivalent equations. For equivalent equations, we will consider: (1) existence of power series formal solutions, in particular, whether formal solutions belong to the classes of known functions; (2) convergence of formal solutions. We try to improve the Diophantine conditions, Brjuno condition or weaker arithmetic conditions, and find the maximum existence interval; (3) numerical solutions, approximate solutions or some analytic particular solutions. We hope that this project can enrich and develop the invariant curves theory of planar mapping, and promote the development of related applied sciences.

英文关键词: invariant curves;analytic solutions;small divisors

成为VIP会员查看完整内容
0

相关内容

【干货书】优化与学习的随机梯度技术,238页pdf
专知会员服务
54+阅读 · 2021年11月22日
专知会员服务
19+阅读 · 2021年9月23日
专知会员服务
45+阅读 · 2021年8月5日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
117+阅读 · 2020年11月2日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
27+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
46+阅读 · 2020年7月29日
【干货书】图形学基础,427页pdf
专知会员服务
149+阅读 · 2020年7月12日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
交替方向乘子法(ADMM)算法原理详解
PaperWeekly
5+阅读 · 2022年1月21日
用狄拉克函数来构造非光滑函数的光滑近似
PaperWeekly
0+阅读 · 2021年10月23日
微软2022秋招常见问题解答!
微软招聘
0+阅读 · 2021年8月24日
求解稀疏优化问题——半光滑牛顿方法
极市平台
50+阅读 · 2019年11月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Fast Circular Pattern Matching
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Dynamic Network Adaptation at Inference
Arxiv
0+阅读 · 2022年4月18日
Arxiv
16+阅读 · 2020年5月20日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
小贴士
相关主题
相关VIP内容
【干货书】优化与学习的随机梯度技术,238页pdf
专知会员服务
54+阅读 · 2021年11月22日
专知会员服务
19+阅读 · 2021年9月23日
专知会员服务
45+阅读 · 2021年8月5日
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
117+阅读 · 2020年11月2日
【斯坦福大学】矩阵对策的协调方法,89页pdf
专知会员服务
27+阅读 · 2020年9月18日
《常微分方程》笔记,419页pdf
专知会员服务
74+阅读 · 2020年8月2日
专知会员服务
46+阅读 · 2020年7月29日
【干货书】图形学基础,427页pdf
专知会员服务
149+阅读 · 2020年7月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Fast Circular Pattern Matching
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Dynamic Network Adaptation at Inference
Arxiv
0+阅读 · 2022年4月18日
Arxiv
16+阅读 · 2020年5月20日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
微信扫码咨询专知VIP会员