项目名称: 几类映射的不变曲线问题的研究
项目编号: No.11501069
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 赵侯宇
作者单位: 重庆师范大学
项目金额: 18万元
中文摘要: 本项目利用动力系统中的小除数理论及线性化思想,对几类映射的不变曲线问题进行探讨,主要通过映射的等价方程进行讨论。针对等价方程,主要考虑:(1) 幂级数形式解的存在性,特别是形式解与已知函数所属函数类是否相同的情况;(2)形式解的收敛性,对于收敛条件来说,考虑改进Diophantine或Brjuno条件,或找到更弱的条件,并寻求最大收敛区间;(3)找到几类方程的数值解、近似解及某些解析特解。希望本课题的研究能丰富和发展平面映射的不变曲线理论,并对相关科学技术领域的发展起到促进作用。
中文关键词: 不变曲线;解析解;小除数
英文摘要: In this project, we will discuss the invariant curves for several mappings by small divisor theory and linearization in dynamical system. These can be done through equivalent equations. For equivalent equations, we will consider: (1) existence of power series formal solutions, in particular, whether formal solutions belong to the classes of known functions; (2) convergence of formal solutions. We try to improve the Diophantine conditions, Brjuno condition or weaker arithmetic conditions, and find the maximum existence interval; (3) numerical solutions, approximate solutions or some analytic particular solutions. We hope that this project can enrich and develop the invariant curves theory of planar mapping, and promote the development of related applied sciences.
英文关键词: invariant curves;analytic solutions;small divisors