项目名称: 基于非线性分叉动力学的航天器集群构型控制研究

项目编号: No.61473037

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 黎康

作者单位: 北京控制工程研究所

项目金额: 80万元

中文摘要: 具有众多成员数量的航天器集群(成员多达几十甚至几百)在未来对地观测、深空探测等领域有着特殊的优势。而传统星间相对构型控制一般要对各个航天器进行路径规划,每个航天器再根据规划的路径实现跟踪控制。当集群成员数目众多时,控制律复杂,计算量急增,甚至难以实现;而且由于不掌握集群动力学平衡态的全局特性,路径优化计算容易陷入局部极小值。 本项目提出利用非线性分叉动力学设计航天器大规模集群构型控制的新方法。根据集群构型要求,可设计具有分叉特性(主要是静态分叉和霍普夫分叉)的人工控制力场,仅需调整少数几个分叉参数,集群成员就可在闭环动力学系统固有特性驱动下,由分叉引起平衡解的突变,从而实现集群构型的捕获、维持与重构。进一步,研究分叉后平衡解的大范围稳定性,给出稳定解吸引域的估算范围,以保证分叉后的集群构型具有足够的鲁棒稳定性。本研究提出的控制方法,更适合大规模集群构型的控制问题,鲁棒性更高,计算简洁。

中文关键词: 航天器集群;构型控制;分叉;稳定性

英文摘要: Spacecraft swarms with huge members,for example,several hundruds, pose great advantages in many applications such as erath remote sensing, or deep space exploration.However,in traditional spacecraft formation control framework, pathing planning needs to be settled before orbital maneuver, and every spacecraft in the formation follows the preconditoned path. When the number of spacecraft reach to swarm level,the control laws by tradition framework become very complex and computation consuming may be too huge to be burdened.Forermore,such path planning calculation may ran into a local minimum for having no konowleges of global stability. A new spacecraft swarm control methodology is proposed by using nonlinear bifurcation dynamics. According to desired spacecraft swarm configuration, artificial force filed with bifurcation characteristics can be designed. By setting few bifurcation parameters, bifurcation may be aroused, and members in spacecraft swarms can be drove to new balanced position under closed-loop bifurcation dynamics for the purpose of formation capture, maintenance and rebuild. Furthermore, to ensure enough robust stability, the global stabilities of the new balance position after bifurcation are analyzed by estimation the attraction region of stable solves. The presented method may be more applicable, more robust and less calculation consuming for massive spacecraft swarms control.

英文关键词: spacecraft swarm;formation control;bifurcation;stability

成为VIP会员查看完整内容
1

相关内容

Kyoto大学Toshiyuki:快速复杂控制系统的实时优化,133页ppt
【博士论文】集群系统中的网络流调度
专知会员服务
40+阅读 · 2021年12月7日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
专知会员服务
23+阅读 · 2021年6月9日
多智能体深度强化学习的若干关键科学问题
专知会员服务
177+阅读 · 2020年5月24日
【硬核书】可扩展机器学习:并行分布式方法
专知会员服务
81+阅读 · 2020年5月23日
专知会员服务
198+阅读 · 2019年8月30日
如何零宕机将本地 Kafka 集群迁移上云?
InfoQ
0+阅读 · 2022年4月17日
【学科发展报告】无人船
中国自动化学会
26+阅读 · 2019年1月8日
无人机集群对抗研究的关键问题
无人机
51+阅读 · 2018年9月16日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
0+阅读 · 2022年4月29日
小贴士
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员