项目名称: 过渡金属碳化物电极材料的设计、可控合成、Li+离子嵌入及其电化学储能特性研究

项目编号: No.51472066

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无机非金属材料学科

项目作者: 张喜田

作者单位: 哈尔滨师范大学

项目金额: 88万元

中文摘要: 本项目拟将锂电池的储能机制应用于超级电容器,构建Li+离子超级电容器。采用密度泛函理论计算过渡金属碳化物的电子和结构性质及Li电荷储存能力,筛选出最有潜力的碳化物(Mn+1CnTx)。然后,采用球磨技术可控合成三元碳铝化物Mn+1AlCn相,再以其为前驱物,采用化学剥离技术可控合成Mn+1CnTx超薄纳米片,研究从Mn+1AlCn原子层中抽掉Al原子层的动力学;研究超薄纳米片的基本性质、材料组成和微观结构;探索Li+离子嵌脱Mn+1CnTx原子层的物理机制;研究材料组成和微观结构对其电化学性能的影响规律与作用机制;揭示材料组成、结构与电化学性能之间的内在关系。尝试组装Li+离子超级电容器,表征其电化学性能。这些问题的研究为高质量Mn+1CnTx的制备与应用提供重要的依据,有助于促进高性能、低成本电化学储能关键材料的发展,为主动优化设计具有优良性能的电化学储能材料和器件提供一种新的思路。

中文关键词: 电极材料;陶瓷材料;凝聚态物理;电化学性能;纳米材料

英文摘要: The principle of storage capability for Li ion batteries is applied in the supercapacitor to construct Li ion supercapacitors. Density function theory computions are performed to investigate the electronic properties, structure stability, and Li storage capability of the transition metal carbides (Mn+1CnTx, where M is a transition metal;C represents carbon; T represents surface termination (HO,O,and/or F);x represents the number of termination groups;n=1,2, and 3) to select the promising Mn+1CnTx.And then, the layered ternary metal carbides (Mn+1AlCn) phase is controllablly synthesized by a ball-milling technology.The derived Mn+1AlCn phase is served as precursors of the synthesized two dimensional Mn+1CnTx super-thin nanosheets, which are controllablly synthesized through the chemical exfoliation method. The kinetic of the Al atom layer abstracted from the Mn+1CnTx atom layers is investigated. The primary properites, compositions and microstructures of the Mn+1CnTx nanosheets are also studied. The physical mechanism of the intercalation and de-intercalation for Li ions into Mn+1CnTx atom layers is proposed. The effect of the compositions and microstructures for the Mn+1CnTx nanosheets on the electrochemical performance is investigated, demonstrating the internal relations between the composition and microstructure as well as the electrochemical performance. Li ion supercapacitors are fabricated and their electrochemical performance is characterized. These investigations on these problems provide an important evidence for the synthesis and applicaion of the high quality Mn+1CnTx,which could help the developing of the important electrode materials with the high-performance,low cost, and high electrochemical storage capability. This work provides a new idea to optimize design good electrode materials with a excellent electrochemical performance.

英文关键词: Electrode Materials;Ceramic Materials;Condensed Matter Phsyics;Electrochemical performance;Nanomaterials

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
19+阅读 · 2022年3月17日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年5月7日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
16+阅读 · 2021年1月19日
专知会员服务
29+阅读 · 2020年8月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
58+阅读 · 2021年5月3日
Knowledge Representation Learning: A Quantitative Review
小贴士
相关主题
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
【AAAI 2022】299页PPT,NUS最全《自动合成》教程
专知会员服务
19+阅读 · 2022年3月17日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年5月7日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
16+阅读 · 2021年1月19日
专知会员服务
29+阅读 · 2020年8月8日
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
20+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员