项目名称: WOLED磷光材料分子和有机光伏材料分子中的激发态动力学的理论研究
项目编号: No.91233105
项目类型: 重大研究计划
立项/批准年度: 2013
项目学科: 物理化学
项目作者: 彭谦
作者单位: 中国科学院化学研究所
项目金额: 80万元
中文摘要: 本项目拟面向能源的光电转换材料----WOLED有机金属配合磷光材料和窄带隙的光伏给体材料,以用第一性原理定量预测磷光材料的发光效率和光谱,及光伏给体材料的激子扩散长度为导向,重点发展分子激发态动力学中,自旋轨道耦合诱导的辐射跃迁和无辐射跃迁速率理论,及激子扩散理论;解决含时密度泛函框架下,自旋轨道耦合矩阵元计算、非绝热耦合矩阵元、有机晶体中分子间库仑相互作用等关键的科学问题;以期实现拥有自主产权的发光效率、光谱、激子扩散等理论方法和软件的科学目标;作为理论方法的应用,结合可靠的实验,探索有机金属配合物和窄带隙光伏给体材料的激发态演变规律,建立起磷光分子的发光性能与分子结构、光伏给体材料的激子传输性能与分子结构之间的内在联系,为新型高效的光电转换材料分子的理性设计提供信息和思路,缩短材料创新的周期,为我国在可再生能源的开发和能源高效利用方面的光电转换材料和器件的创新和突破,贡献一份力量。
中文关键词: 有机金属配合物的发光效率;系间窜越速率理论公式;磷光发射光谱;能量转移速率理论;热振动关联函数
英文摘要: The main objects of this project are the organic photoelectric conversion materials, such as the organic metal complexes used as the luminescent layer in white organic light-emitting diode (WOLED), and the low-bandgap organic photovoltaic materials. In order to quantitatively predict the luminescence quantum yield of the phosphorescent molecules and the exciton diffusion lengths of the photovoltaic donor molecules from first principles, we will focus on developing the rate theories of the radiative and non-radiative transitions induced by spin-orbit coupling, and the diffusion theory of the exciton in organic crystals or polymers. And several key scientific issues must be resolved, such as spin-orbit coupling matrix, non-radiative coupling matrix, and the intermolecular coulomb coupling in the frame of time-dependent density functional theory (TDDFT). Thus, we are able to possess our own original theory method and program codes, using which we can quantitatively predict the phosphorescence quantum yield, phosphorescent spectra, and the exciton diffusion length. Then, combined with reliable experimental data, we are going to explore the evolution of the excited-state molecules, and establish the intrinsic property-structure relationship, and provide more information and ideas for the rational molecular design of
英文关键词: the luminescent property of organometallic complex;the rate theory of intersystem crossing;phosphorescence spectrum;the rate theory of energy transfer;thermal vibration correlation function