项目名称: 热致相分离法制备聚丙烯腈中空纤维膜及膜孔结构与成形机理研究

项目编号: No.21206123

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 化学工程及工业化学

项目作者: 韩娜

作者单位: 天津工业大学

项目金额: 25万元

中文摘要: 聚丙烯腈(PAN)中空纤维膜具有成本低廉、耐腐蚀、抗老化、亲水性较好等特点,但国内外一直只能采用溶液纺丝法制备,膜结构不易控制、力学性能差,工艺复杂、能耗高且污染环境。本课题以自制的可熔融丙烯腈-丙烯酸甲酯共聚物(AN-MA)为基体,采用热致相分离法(TIPS)结合拉伸工艺制备PAN中空纤维膜。主要在以下三方面展开研究:1)混合稀释剂与AN-MA的相互作用对相图及相分离过程的影响;2)非等温及应力作用下膜孔结构的变化规律及成形机理,完善非等温液滴生长动力学,建立应力下膜孔生长动力学模型,实现膜孔结构的可控;3)纺丝工艺对PAN中空纤维膜结晶和取向的影响规律;超临界流体萃取对膜结构及性能的影响。总体目标:建立TIPS法制备PAN中空纤维膜的基础理论,在理论和实验的支持下,实现膜孔和纤维结构的可控。项目成果符合绿色低碳的要求,进一步丰富TIPS的基础理论,促进PAN中空纤维膜的快速、稳定发展。

中文关键词: 丙烯腈-丙烯酸甲酯共聚物;热致相分离;微孔膜;结构;性能

英文摘要: Polyacrylonitrile (PAN) hollow fiber is low price, corrosion-resistant, and ageing-resistant. It also has good biocompatibility and hydrophilicity. However, the conventional approach for producing PAN-based fiber is solution-spininning. The membrane structure is not easy to be controlled and has a poor mechanical property. Furthermore, solution spinning is complex, high power consumption and polluting the environment. In this study, the melt processable acrylonitrile-methylacrylate copolymer (AN-MA) was used as a precursor, the AN-MA hollow fibers were formed by thermally induced phase separation method (TIPS) and stretching. This project will be identified mainly in the following three aspects: 1) the interactions between thinner mixture and AN-MA copolymer, effects of the interactions on the phase separation behaviors and phase diagrams; 2) the changing law and forming mechanism of pore structure under non-isothermal and stress conditions, completing non-isothermal kinetics of droplet growth, establishing growth kinetics model of membrane pore under stress condition; 3) influences of spinning technology on the crystallization and orientation of PAN hollow membrane, effects of supercritical extraction on structures and properties of hollow fiber. We aimed at establishing a basic theory of preparing PAN hollow m

英文关键词: poly(acrylonitrile-co-methyl acrylate);Thermally induced phase separation;Microporous membranes;structure;property

成为VIP会员查看完整内容
0

相关内容

信息物理融合系统 (CPS)研究综述
专知会员服务
43+阅读 · 2022年3月14日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
专知会员服务
28+阅读 · 2021年4月10日
专知会员服务
38+阅读 · 2021年2月8日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
67+阅读 · 2019年10月18日
双创基地突围,郑州金水的创新模式
36氪
0+阅读 · 2022年3月11日
NIPS'21 | 通过动态图评分匹配预测分子构象
图与推荐
0+阅读 · 2021年11月29日
手把手教你,19步从石头里抠出一块CPU
新智元
0+阅读 · 2021年11月16日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关主题
相关VIP内容
信息物理融合系统 (CPS)研究综述
专知会员服务
43+阅读 · 2022年3月14日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
20+阅读 · 2021年12月4日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
22+阅读 · 2021年4月21日
专知会员服务
28+阅读 · 2021年4月10日
专知会员服务
38+阅读 · 2021年2月8日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
67+阅读 · 2019年10月18日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员