项目名称: 高温高压水热体系中CO2传感器的研制

项目编号: No.41203047

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 地球化学

项目作者: 王光伟

作者单位: 重庆绿色智能技术研究院

项目金额: 25万元

中文摘要: CO2作为海底热液的重要组分,被认为与成矿机制、地质构造、地球深部过程和海洋环境密切相关。本课题拟基于电化学原理和电势型气体传感器组合设计的思想,分别利用Li、Ba掺杂化合物的CO2敏感特性,以及高价阳离子(Zr4+、Al3+、Mg2+、Sc3+等)导体和氧离子固体电解质钇稳定氧化锆(Yttrium Stabilized Zirconia, 简称YSZ)的离子传输特性,研制一种可对高温高压水热体系中CO2逸度/活度进行快速、准确、原位测量的化学传感器。该传感器经过外形和结构完善后,可望用于海底极端环境下CO2逸度/活度的原位测量。一方面,可为人们研究海底热液活动和进行资源环境勘探提供技术支撑,进一步完善海洋原位化学探测系统;另外一方面,对阐明成矿机制、认识特殊地质构造、推断地球深部演化和脱气机理、探索石油天然气的来源和运聚、评估深海沉积和全球环境变化具有重要意义。

中文关键词: CO2 逸度/活度;传感器;高温高压;水热体系;海底热液

英文摘要: Be an important component of the subseafloor hydrothermal fluids, CO2 has been revealed a close linkage with metallogenic mechanisms, geological structures, deep earth processes and marine environments. In this project, a CO2 sensor which can rapidly, precisely and in-situ measure the CO2 fugacity/activity in the hydrothermal systems at elevated temperatures and pressures will be developed based on the electrochemical principles and design philosophy of potentiometric gas sensors assembling, and with the use of li or Ba doped compounds' CO2 sensitivity, multivalent cation (Zr4+, Al3+, Mg2+, Sc3+, etc.) conductors and oxide anion conducting solid electrolyte (Yttrium Stabilized Zirconia, YSZ) for their ion transmission characteristics respectively. After some configurational and structural improvements, this sensor can be expected to be used to in-situ determine the CO2 fugacity/activity under the submarine extreme environments. That on one hand, can provide technical support for people's study of the subseafloor hydrothermal fluids activities and exploration of the resources and environments, further improve the marine in-situ chemical detection system; and on the other hand, is significant for people's elucidating of metallogenic mechanisms, knowing of special geological structures, inferring of deep earth evol

英文关键词: CO2 fugacity/activity;sensor;elevated temperatures and pressures;hydrothermal system;subseafloor hydrothermal fluids

成为VIP会员查看完整内容
0

相关内容

《利用人工智能加速能源转型》报告
专知会员服务
74+阅读 · 2022年2月23日
专知会员服务
92+阅读 · 2021年9月21日
专知会员服务
139+阅读 · 2021年6月1日
数据价值化与数据要素市场发展报告(2021年),53页pdf
专知会员服务
2+阅读 · 2021年5月30日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【AAAI2021】组合对抗攻击
专知会员服务
47+阅读 · 2021年2月17日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
全新量子充电技术:最快9秒充满一辆电动汽车?
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
自动驾驶车载激光雷达技术现状分析
智能交通技术
16+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2020年12月10日
小贴士
相关主题
相关VIP内容
《利用人工智能加速能源转型》报告
专知会员服务
74+阅读 · 2022年2月23日
专知会员服务
92+阅读 · 2021年9月21日
专知会员服务
139+阅读 · 2021年6月1日
数据价值化与数据要素市场发展报告(2021年),53页pdf
专知会员服务
2+阅读 · 2021年5月30日
【CVPR2021】自监督几何感知
专知会员服务
45+阅读 · 2021年3月6日
【AAAI2021】组合对抗攻击
专知会员服务
47+阅读 · 2021年2月17日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员