项目名称: 低氧对豚鼠耳蜗螺旋动脉和血管纹毛细血管细胞间缝隙连接的影响及机制研究

项目编号: No.31460264

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 生物科学

项目作者: 马克涛

作者单位: 石河子大学

项目金额: 48万元

中文摘要: 缺血/低氧造成的内耳循环紊乱与听力丧失有密切关联。耳蜗螺旋动脉(SMA)是供应耳蜗血液的唯一动脉,依靠相邻细胞间缝隙连接通道所介导的电、化学信息的传递,可保障其在纵向和横向上电、机械活动的同步性。缝隙连接是维持血管正常舒缩功能的重要结构, 有研究发现低氧可造成心肌和肺动脉中缝隙连接的异常,我们前期的工作也证实低氧能够抑制SMA细胞间的缝隙连接通讯,但确切的作用机制仍不明了。由此我们假设低氧造成的内耳循环紊乱可能由于缝隙连接通道蛋白表达的改变,引起SMA细胞间缝隙连接通讯异常,而造成SMA舒缩功能对血管活性物质的反应失常,又会更进一步加剧低氧引起的血管功能的异常,而引发突发性耳聋或耳蜗功能失调等疾病。本研究将为内耳循环系统紊乱而造成的听力丧失提供理论基础。

中文关键词: 缺血缺氧;缝隙连接;全细胞膜片钳;血管平滑肌细胞

英文摘要: Disorder of the inner ear circulation caused by ischemia/hypoxia is closely related to hearing loss. Spiral modiolar artery (SMA) is the only artery providing blood to cochlea. The electric and mechanical synchronicity of SMA relies on gap junctions among vascular cells. Gap junction channel is an important structure to maintain normal function of blood vessels. Studies have demonstrated that hypoxia can cause alteration in gap junctions in cardiac and pulmonary arteries. Our previous study has also showed that hypoxic exposure inhibited inter-cellular gap junction communication of SMA. However, the exact mechanism(s) are still unclear. In this study, we tested the hypothesis that the disorder of inner ear circulation caused by hypoxia is mediated by the changes in protein expression of connexins that construct gap junction channels, which causes the abnormality of gap junction communication in SMA. The altered response of SMA to vasoactive substances further aggravates the effects of hypoxia on SMA, that eventually will cause sudden deafness or cochlea disfunction. Results from this study will provide better understanding of the mechanism(s) that inner ear circulation disorder causes hearing loss.

英文关键词: ischemia/hypoxia;gap junction;whole-cell patch clamp;vascular smooth muscle cell

成为VIP会员查看完整内容
0

相关内容

专知会员服务
37+阅读 · 2021年8月5日
多模态情绪识别研究综述
专知会员服务
169+阅读 · 2020年12月21日
【NeurIPS 2020】视觉注意力神经编码
专知会员服务
42+阅读 · 2020年10月4日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
小贴士
相关主题
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员