项目名称: p.c.f.自相似集上的函数与Dirichlet型及相关问题
项目编号: No.11271327
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 阮火军
作者单位: 浙江大学
项目金额: 60万元
中文摘要: 本项目研究内容包括:(1) p.c.f.自相似集上分形插值函数的性质。期望用 纵向尺度因子刻画这类函数具有有限能量的充要条件,并考察它们的法向导数和Laplacian。 期望刻画分形插值函数与Green函数的关系,并利用分形插值函数考察预解核。 (2) p.c.f.自相似集上的热点猜想。热点猜想涉及带有Neumann边界条件的拉普拉斯 算子的第二特征函数。期望在定义域为p.c.f.自相似集的情形下,尝试证明,这类函数的最值是否一定在边界上达到。 (3) p.c.f.自相似集上Dirichlet型的存在性与唯一性。此外,也将研究如何在Sierpinski地毯上定义Dirichlet型。 (4).局部域上的分形插值。将与p.c.f.自相似集上的分形插值相比较。也将定义局部域上的分形插值函数与Green函数,并给出实际应用的例子。
中文关键词: 热点猜想;分形插值函数;Dirichlet型;局部域;Lipschitz等价
英文摘要: The contents of this project include: (1) The properties of fractal interpolation functions (FIFs) on p.c.f. self-similar sets. We expect to present the necessary and sufficient conditions by vertical scaling factors such that FIFs have finite energy. We will also discuss normal derivative and Laplacian of these functions. We expect to characterize the relationship between FIFs and the Green function. Moreover, we will study resolvent kernel by FIFs. (2) Hot-spots conjecture on p.c.f. self-similar sets. The conjecture involves the second eigenfunctions of Laplacian with the Neumann boundary condition. We will deal with the conjecture on the p.c.f. self-similar sets. We will also attempt to show whether these functions attain their extreme values on the boundary. (3) The existence and uniqueness of Dirichlet form on p.c.f. self-similar sets. We will also discuss how to define Dirichlet form on the Sierpinski Carpet. (4) The fractal interpolation on local fields. We will compare with that of on the p.c.f. self-similar sets. We will define fractal interpolation functions and Green functions, and evaluate some applied examples.
英文关键词: hot spots conjecture;fractal interpolation functions;Dirichlet form;local field;Lipschitz equivalence