项目名称: 地幔碳酸盐熔体电导率的分子模拟与模型研究

项目编号: No.41503060

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 天文学、地球科学

项目作者: 耿明

作者单位: 中国科学院地质与地球物理研究所

项目金额: 21万元

中文摘要: 地球内部电导率结构研究是近些年来地球深部领域的研究热点,而其中一些高电导异常区域的成因也成为学术界争论的焦点之一。不同研究组提出的含水的地幔矿物和部分熔融的硅酸盐熔体似乎都不能让大家达成共识。而碳酸盐熔体的高电导率特征为这一争论带来了新的思路。但目前针对地幔中Ca/Mg碳酸盐熔体的电导率研究还很少,并且实验中无法得到原位的成分比例信息。本项目拟通过使用自由能优化方法获得已有实验中相应温度压力条件下的矿物组成与比例,并通过非平衡分子动力学模拟获得实验不覆盖区域的碳酸盐熔体电导率。然后结合实验和模拟数据建立起6GPa以内的碳酸盐熔体电导率随温度、压力、组分变化的模型。利用建立的模型和自由能优化方法对碳酸盐熔体参与的地球深部碳循环过程中地幔电导率可能的变化做出预测,并讨论碳酸盐熔体对地幔高电导区可能的贡献。

中文关键词: 碳酸盐熔体;电导率;地幔;热力学模型;分子动力学模拟

英文摘要: Electrical conductivity structure of the Earth’s deep interior became a popular research topic recently. And the mechanism of which caused the high conductivity anomalies is one of the most attractive debates. Neither hydrous mantle minerals nor silicate melts in partial molten rock can convince everyone. Carbonate melt provided us new possibility to consider the cause of high conductivity anomalies. But the research on carbonate melt is far less than enough. Experiment results are lack of “in situ” composition information. In this study, we plan to get the composition information by using free energy optimization technique. And also expand the carbonate melt conductivity data range up to 6GPa with non-equilibrium molecular dynamics simulations. Then build up a carbonate melt conductivity model for different temperature, pressure and composition. With the help of this model, we will predict the variations of mantle conductivity in earth deep carbon cycle with carbonate melt. We will also discuss the contribution carbonate melt may make for the mantle high conductivity anomalies.

英文关键词: Carbonate Melt;Electrical Conductivity;Mantle;Thermodynamic Model;Molecular dynamics simulation

成为VIP会员查看完整内容
0

相关内容

信息物理融合系统 (CPS)研究综述
专知会员服务
43+阅读 · 2022年3月14日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
56+阅读 · 2022年2月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
最新《图神经网络模型与应用》综述论文
专知会员服务
292+阅读 · 2020年8月2日
AI从底物和酶的结构中预测米氏常数,量化酶活性
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
17+阅读 · 2021年3月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
小贴士
相关主题
相关VIP内容
信息物理融合系统 (CPS)研究综述
专知会员服务
43+阅读 · 2022年3月14日
AAAI 2022 | ProtGNN:自解释图神经网络
专知会员服务
39+阅读 · 2022年2月28日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
56+阅读 · 2022年2月3日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
最新《图神经网络模型与应用》综述论文
专知会员服务
292+阅读 · 2020年8月2日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
1+阅读 · 2022年4月19日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
17+阅读 · 2021年3月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
微信扫码咨询专知VIP会员