项目名称: 基于噻吩[3,2-b]并噻吩新型梯形稠环分子的设计合成及其光伏性能研究

项目编号: No.51303197

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 王婷

作者单位: 中国科学院青岛生物能源与过程研究所

项目金额: 25万元

中文摘要: 本项目拟设计合成一系列基于噻吩[3,2-b]并噻吩(TT)的新型梯形稠环分子。一方面,高空穴迁移能力的TT会有效提高整个稠环体系的空穴迁移能力;另一方面,稠环体系可使聚合物链间堆积更加紧密,可有效提高聚合物主链的平面性,因此以TT为主体骨架的新型稠环分子会综合两方面优点,势必会更大程度的拓宽材料的光学吸收范围和提高材料空穴迁移能力。根据稠环骨架不同,本文设计的梯形稠环分子主要分为四种类型;同时每种骨架具有两类桥连中心:可以提高材料迁移率的第四主族元素(碳,硅,锗)或可以拓宽材料吸收范围的二硫富瓦烯BTDT。以这些稠环分子作为电子给体,与两种常用电子受体(TPD,DPP) 共聚得到一系列窄带隙聚合物。本项目将对共聚物的光伏器件进行表征,研究稠环结构对材料性能的影响,深入研究其作用机理,为设计性能优良的有机光电功能材料提供思路。

中文关键词: 共聚物;稠环;窄带隙;能量转换效率;侧链

英文摘要: This project will focus on design and synthesis of a new series of fused ladder molecules incorporating thieno[3,2-b]thiophene (TT).TT with high hole mobility will effectively improve the charge transporting property of the whole system; Also, fused ladder molecules will suppress the intermolecular twisting along the conjugated backbone which will enhance the π-πstacking of the corresponding copolymer. Therefore, fused ladder monomer based on TT unit will integrated these advantages of both sides, which will broaden the optical absorption range and improve the hole mobility capacity, which will be beneficial to obtain high efficiency photovoltaic materials. According to the skeleton, four different molecule systems are designed. Meanwhile, each system has two types of bridge centres (BTDT and the group ⅣA elements,such as C,Si,Ge). Furthermore, copolymers based on ladder molecules and novel acceptors(TPD,DPP) will be synthesized and the photovoltaic properties of the polymers will be investigated. In this project, the effect of fused ladder sturcture on the photovoltaic performance will be studied and the mechanism will be investigated deeply. This research will provide the basis for designing novel organic materials with good photovoltaic performance.

英文关键词: copolymers;ladder-type;low bandgap;power conversion efficiency;side chain

成为VIP会员查看完整内容
0

相关内容

人工智能到深度学习:药物发现的机器智能方法
专知会员服务
35+阅读 · 2022年5月6日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
专知会员服务
41+阅读 · 2021年9月7日
几何深度学习分子表示综述
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
81+阅读 · 2020年12月11日
专知会员服务
28+阅读 · 2020年8月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年5月25日
Arxiv
0+阅读 · 2022年5月25日
Arxiv
27+阅读 · 2022年3月28日
Arxiv
11+阅读 · 2018年5月13日
小贴士
相关VIP内容
人工智能到深度学习:药物发现的机器智能方法
专知会员服务
35+阅读 · 2022年5月6日
【AAAI 2022】 GeomGCL:用于分子性质预测的几何图对比学习
专知会员服务
23+阅读 · 2022年2月27日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
专知会员服务
41+阅读 · 2021年9月7日
几何深度学习分子表示综述
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
81+阅读 · 2020年12月11日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员